The growth of weak layers from hoar crystals

雪氷写真館

表面の様子　白く光っているのが表面霜
d：岩見沢のアメダスデータ（2007年2月27〜3月1日）

霜系弱層とその形成過程

「表面霜」と「しもざらめ雪」は表層雪崩の弱層となる。両者を霜系弱層と呼ぶことにする。一晩で形成された霜系弱層の写真とその時の気象推移、および形成過程の模式図を示す。

a：表面霜の顕微鏡写真。結晶の上下は実際の上下に一致。長さは約3mm。
b：表層内にできたしもざらめ雪の結晶。大きさは2mm前後が多い。
c：積雪表面の接写。aのような数の結晶が積雪表面から上に向かって伸びている。長さ3〜6mmの結晶が多い。朝日を反射して光った結晶が白く写っている。
d：この霜系弱層が形成された時の気象推移（岩見沢のアメダスデータ、2007年）。
e：霜系弱層の形成過程模式図（この頁 d の気象データを参考にして作成）

①28日は快晴で、日射が27日夜に積もった表層の新雪を透過し内部の雪温が上昇。
②28日の日没後、放射冷却で表面温度が急激に低下し、日中に暖められた新雪層の下部で蒸発し、上部の低温層に凝結し霧の結晶ができる。表面には空気中の水蒸気が凝結し霧の結晶ができる。
③3月1日、日の出前が表面温度最低となる。表層は全てしもざらめ雪の結晶になる。一方、表面には一面、表面霜の結晶が成長している。もし、この後に大量の降雪や吹き溜まりが「霜系弱層」の上に積もると、表層雪崩の危険が高まる。
観測場所：北海道岩見沢市北村

秋田谷英次　会員（北の生活館）