レーザー距離計による路面残雪深計測における表面下散乱現象

山賀康平¹, 〇平田拓巳¹, 上村靖司², 杉原幸信² ¹長岡技術科学大学大学院 工学研究科²長岡技術科学大学 機械創造工学専攻

1. はじめに

年間を通じて温度が一定な地下水を散水する融雪装置 (消雪パイプ)は、比較的低コストで効果も高いことから 雪国に欠かせない技術として広く普及している.しかし、 地下水を過剰にくみ上げて地下水位を過度に低下させない ために、無駄な散水を減らせる高精度の制御が必要である.

現在は降雪の有無を検知して制御する方法が主流である が、上村らの研究では、これを積雪深による制御に変更す るだけで消費熱は半分以下に削減され、運転時間の短縮に つながることが示されている.

本研究では、路面における積雪有無の検知のみならず、 その積雪深を計測し、積雪深によって精密に稼働判定する 融雪システムの実用化を目指す.そのために、散水融雪装 置が設置されている路面に残っている雪の深さ、すなわち 「残雪深」を安価な汎用レーザー距離計を用いて精度良く 計測する方法について検討する.

山賀ら(2020)は、汎用レーザー距離計で残雪深の計測実 験を行い、10 cm 以下の残雪深測定において測定値が実際 よりも低くなるバイアスが生じることを報告した.本報告 では、残雪深計測において確認されたバイアスが「表面下 散乱現象」によって引き起こされていると考え、この表面 下散乱現象をモンテカルロ法によるシミュレーションに よって分析し、レーザー距離計を用いた残雪深計測に対す る表面下散乱の影響について調べた結果を報告する.

2. 路面積雪深計測実験

2.1 実験方法

散水融雪装置を残雪深で制御するには、5 cm 以下の積 雪深をを高精度(±1 cm)に測定することが求められる. そこでまずは,路面上の積雪深を正しく測定できるか、実 際の計測環境を想定して測定実験を行った.本実験では路 面上の模擬雪にレーザー距離計(SICK 社製 DT-35-BT15551)のレーザー光を照射し、測定された距離 から積雪深を算出した.レーザー距離計は図1に示すよう に高さ5 m、角度30 °の位置に設置した.レーザー距離計 の設置高さと角度は実際の路面積雪深の計測環境と合わせ た.含水率を変えて2種類を用意し、0~10 cm の1 cm 刻 みに積んだ.模擬路面は黒路面と白路面の2種類を用意し た.

2.2 実験結果

計測実験の結果を図2に示す.実験の結果,積雪・シャー ベット双方で積雪深測定値が直線で示した実際の積雪深よ りも小さい値となった.このバイアスの大きさは積雪深と 路面色によって変化し,白路面では積雪深4,5 cm以下の積 雪深測定値がマイナスの値になることも確認された.黒路 面では2~4 cm以下の積雪深でレーザー光の反射強度が足 りず,積雪深を測定できなかった.以上の結果により,レー ザー距離計を用いて10 cm以下の積雪深を直接,精度良く 測定するのは困難であることが分かった.

図2 異なる路面色における積雪深の測定結果と推定結果

3. 表面下散乱

3.1 積雪面の表面下散乱現象

レーザー光が照射された模擬雪を横から見ると,図3の ように積雪粒子内部にレーザー光が入り込んでいることが 確認された.これは「表面下散乱」と呼ばれる,入射した 光が表面だけでなく積雪粒子内で反射・散乱した後に表面 から出ていく現象である.本来,レーザー距離計から対象 物表面までの距離を計測するはずだが,表面下散乱を起こ すと,レーザー光の経路が表面での反射時よりも長くなり, 計算によって導かれる積雪深の測定値が小さくなる(図4).

図3 表面下散乱を起こしたレーザー光の様子

図4 表面下散乱現象と残雪深測定誤差の模式図

図2に示したとおり、5 cm 以下の浅い残雪深での計測 値は黒路面と白路面で明らかに異なる.このことから、残 雪深が浅くなると、残雪深測定値に路面による影響が表れ ると考えられる.図5に表面下散乱による路面の影響を示 す.レーザー光の光子が路面に達すると、黒路面では光子 の吸収、白路面では光子の反射が起こる.黒路面では光子 の一部が吸収されることで、反射強度が弱くなり、浅い残 雪深が測定できなくなる.白路面ではレーザー光が表面下 散乱を起こし、さらに白い路面で反射することで、計算に よって導かれた残雪深測定値がマイナスになると考えられ る.

図5 表面下散乱と路面の影響

3.2 モンテカルロ法による表面化散乱シミュレーション

雪などの散乱媒質に入射した光の伝播解析方法として, モンテカルロ法によるシミュレーションがある.これはヒ トの皮膚などの散乱媒質中の光のふるまいを調べる手法と して実績があり,積雪による光散乱の解析への適用例もあ る.本研究ではこのモンテカルロ法を用いたシミュレー ションを用いて,残雪に入射したレーザー光のふるまいを 調べる.モンテカルロ法(Monte Carlo method, MC)とは, 様々な事象を乱数に対応させ,その事象が何回発生するか, どのくらいの確率で起こるのかなどを,シミュレートする 方法である.モンテカルロ法による光子伝播シミュレー ションでは,光子の進行方向,進行する距離,散乱後のエ ネルギーなどを,散乱媒質の光学特性に基づいて発生させ た乱数を用いて計算する.図6にシミュレーションの模式 図を示す.

図6 モンテカルロ法による 残雪内光子伝播シミュレーションの模式図

本シミュレーションにおいて、散乱媒質は残雪である. 残雪と光子のふるまいは残雪の光学特性(散乱係数 μ s,吸 収係数 μ a,屈折率 nsnow,非等方性パラメータg)によっ て関係づけられる.ここでは、残雪は光学特性が一様で、z 方向は残雪深 Hを、x、y方向は無限の広がりを仮定する. 図7に残雪内光子伝播シミュレーションのフローチャート を示す.原点から残雪に入射した単位エネルギー(W=1)の 光子は、内部で移動、減衰、散乱を繰り返し、最終的には 消滅、あるいは残雪から放出される.シミュレーションで は、光子の残雪内部での移動、減衰、散乱を繰り返し計算 する.減衰により光子のエネルギーがあるしきい値を下 回った場合は、光子が消滅したとみなして計算を終了し、 新たな光子を入射する.光子が残雪深*H*を超えて路面に接 触する場合は、黒路面または白路面の反射率に基づいて吸 収と反射の処理を行う.光子が残雪中で消滅せずに残雪表 面から放出した場合は、光子の放出と伝播した距離を記録 する.残雪入射時に表面で反射、または残雪内部を伝播し て放出した光子の伝播距離を平均することで、レーザー距 離計が受光する残雪深測定値への表面下散乱の影響を見積 もることができる.

3.3 シミュレーション結果

シミュレーションによって求めた放出光子の伝播距離の 平均値について,残雪深と路面ごとに比較してグラフにプ ロットした結果を,図8に示す.

残雪深測定値は6cm となる. 図9にシミュレーションの 結果と残雪深測定実験での模擬雪の残雪深の実測値を示す. 四角形で示すプロットがシミュレーション結果,丸で示す プロットが実測値である.

変換式は(1)式の通りとなる.

伝播距離は光子が積雪表面から入射して放出するまでの

移動距離である.しかしレーザー距離計が出力するのは

レーザー光が往復した距離ではなく,片道分の距離である.

したがって, 伝播距離を半分にした値が, 残雪深測定値の

バイアスとなる. すなわち伝播距離から残雪深測定値への

つまり、伝播距離が 4.00 cm の場合, 2.00 cm が残雪深測

定値へのバイアスとなり、測定時の残雪深が8cmの場合、

(1)

残雪深測定值 = 残雪深 - (伝播距離/2)

図9 シミュレーション結果と実測値の比較

各プロットをみるとシミュレーション結果よりも実測値 の方が,残雪深が低くなるバイアスが大きいことがわかる. バイアスの大きさはシミュレーション結果では約2cm,実 測値では約3cmであった.

黒路面のプロットから,実測値で3cm以下の積雪深を測 れたと仮定した場合,シミュレーション結果のように,残 雪深が浅くなるにつれて測定値が残雪深0cmに漸近する と考えられる.白路面のプロットを比較すると,実測値の 方が,およそ5cm以下となる浅い積雪深において,路面色 の違いによる測定値の差が大きい.シミュレーション結果 と実測値の間に見られる差は,残雪の実際の光学特性とシ ミュレーションで求めた値との違いによるものと考えられ る.なおシャーベットについては、シャーベットの散乱係 数と吸収係数が不明なため、今回はシミュレーションでき なかった.残雪についても、散乱係数と吸収係数の実測値 を用いてシミュレーションすれば、実測値と同じようなプ ロットが得られると考えられる.

5. まとめ

残雪深推定実験で確認されたバイアスについて、モンテ カルロ法を用いた残雪内光子伝播シミュレーションにより, レーザー光の表面下散乱が残雪深測定値に与える影響につ いて調査した.構築したプログラムによるシミュレーショ ンの結果、表面下散乱によって残雪内を伝播し、残雪表面 から放出した光子が 0.13~5.23 cm の伝播距離を持ってい ることが確認できた. 伝播距離から残雪深測定値を計算し, グラフにプロットしたところ、測定実験の実測値と同じよ うに、残雪深が実際の値よりも小さくなるバイアスが確認 できた.さらにおよそ 5cm 以下となる浅い残雪深において, 黒路面と白路面で測定値に差が出ることが確認できた. 表面下散乱によって光子が残雪内部を伝播すると、レー ザー距離計による残雪深測定値が低くなることが確認され た. シミュレーションによる調査の結果,残雪深測定値の バイアス,そして路面による浅い測定値の違いが,表面下 散乱現象によって起こりうることが明らかになった.

参考文献

 [1] 上村靖司,善哉広大(2019)「路面融雪装置の設計熱 負荷 第3報:サービス水準と消費熱の総合評価指標の提 案」,雪氷81(6), pp.269-281.

[2] 山賀康平,上村靖司,藤野丈志,杉原幸信(2020) 「汎用レーザー距離計による路面残雪深計測」,雪氷研究 大会(2020・オンライン)講演要旨集, p.69.

[3] Lihong Wang, Steven L.Jacques, Liqiong Zheng (1995)

「MCML – Monte Carlo modeling of light transport in multi-layered tissues] Computer Methods and Programs in Biomedicine, 47, pp.131-146.

[4] 原田康浩,鳥羽啓太,舘山一孝,神田淳,大前宏和, 三宅 俊子 (2015) 「積雪による光散乱のモンテカルロシ ミュレーション解析」,雪氷研究大会 (2015・松本) 講演 要旨集, p.52.