ハイドレート含有堆積物中における

包接ガスと堆積物ガス間の安定同位体分別

Isotopic fractionation between hydrate-bound and sediment gases in hydrate-bearing sediment cores

木村 宏海¹, 八久保 晶弘¹, Oleg Khlystov², Gennadiy Kalmychkov³, Marc De Batist⁴, 坂上寛敏¹, 南尚嗣¹, 山下聡¹

Hiromi Kimura¹, Akihiro Hachikubo¹, Oleg Khlystov², Gennadiy Kalmychkov³, Marc De Batist⁴, Hirotoshi Sakagami¹, Hirotsugu Minami¹, Satoshi Yamashita¹ Corresponding author: hachi@mail.kitami-it.ac.jp (A. Hachikubo)

多数の天然ガスハイドレートが発見・回収されているロシア・バイカル湖では、北見工業大学がロシア・ ベルギーの各研究機関との共同研究調査を継続している.本研究では、ハイドレート包接ガスと堆積物中の ガスとの間の炭化水素安定同位体比の差から、天然ガスハイドレートの状態に関する情報を得られる、との 考えの下、バイカル湖のハイドレート包接メタンの安定同位体比に関する調査を実施した.その結果、深部 からのガス供給が止まり、ガスハイドレートが分解しつつある地点を特定できる可能性が示唆された.

1. はじめに

ガスハイドレートとは水分子がカゴ状の構造 を形成し、その中に気体分子を包接する、低温・ 高圧の条件下で安定な結晶である.天然に存在す るガスハイドレートの大半は、メタンを主成分と して包接する、いわゆるメタンハイドレートであ る.天然ガスハイドレートは、自然界では永久凍 土の下層や海底・湖底表層堆積物中などに広く分 布しており、次世代エネルギー資源としても注目 されている.しかしながら、その一方ではメタン は温室効果ガスの一種であり、天然ガスハイドレ ートの解離による地球温暖化への影響が懸念さ れている.したがって、天然ガスハイドレートの 生成・解離プロセスの理解は、地球環境システム における天然ガスハイドレートの役割の解明に 役立つと考えられる.

メタンは炭素と水素から構成され, 複数種類の アイソトポログ(同位体分子種)が存在し, ¹²CH₄, ¹³CH₄, CH₃²H などがある.例えば水素に関して は,²H は全体の天然存在比で 0.01%のオーダー であり,残りはほぼ¹H である.人工的にメタン ハイドレートを生成した場合, ハイドレート包接 ガスとハイドレートに取り込まれなかった耐圧 容器内の残ガスとの間で、ゲストガス安定同位体 分別が起こる¹⁾.メタンハイドレート生成時の炭 素安定同位体分別は,通常の安定同位体質量分析 装置の検出限界以下であり,差はほとんどない. 一方,水素安定同位体分別に関しては,ハイドレ ート包接ガスの方が残ガスに比べて 5%程度相 対的に軽いメタンを包接する ¹⁾. この事実は, CH₃²H ハイドレートの平衡圧が CH₄ ハイドレー トの平衡圧よりも若干高く²⁾, CH₃²H が相対的に ハイドレートに包接されにくいことと矛盾しな い.このことを利用して、天然ガスハイドレート のハイドレート包接ガスと,結晶周りの環境ガス である堆積物中のガス(間隙水溶存ガスや気泡な ど)との間のメタン安定同位体比の差から、天然 ガスハイドレートが採取された地点でそもそも 結晶がどのような状態にあるのか,などのガスハ イドレート生成・解離プロセスに関する情報が得 られるのではないかと考えられる.

本研究で対象としているバイカル湖は,淡水環 境下で唯一天然ガスハイドレートが存在する場 所である.また北見工業大学では長年にわたり, ロシア・ベルギーとの共同研究体制を継続し,こ れまでに200本近くにも及ぶ天然ガスハイドレ

' 北見工業大学

²ロシア陸水学研究所

³ロシア地球化学研究所

⁴ ゲント大学

図1 δ¹³C (横軸) および δ²H (縦軸) に関する Δδ 値 (堆積物ガスδ値-ハイドレート包接ガ スのδ値)の関係 (2014~2019 年における全データ). 南湖盆 Kedr 泥火山の全てのコア (記 号○), そのうちガスハイドレート解離が予想されるコア (記号◆).

ート含有堆積物コアが得られている.本研究では, 2014~2019年のバイカル湖調査で得られたハイ ドレート包接ガス中および堆積物ガス中のそれ ぞれのメタン安定同位体比に関する分析結果を 整理し,堆積層深部からのガス供給が止まり,ガ スハイドレート結晶が分解しつつある地点を特 定できる可能性について紹介する.

2. サンプル採取方法

調査船 G. Yu. Vereshchagin 号による 2014 年から 2019 年での調査において,計 97 本のガスハイ ドレート含有堆積物コアがバイカル湖の中央湖 盆・南湖盆で採取されている.コア採取地点の選 定については,ガス湧出地点ないし湖底地形が特 徴的(マウンドやポックマーク等が存在)である 地点を選び,重力コアラーを用いて堆積物コアを 採取した.その後,船上にて速やかに回収された 分解前の天然ガスハイドレート結晶を,水上置換 法を用いてバケツの水の中で分解させ、バイアル 瓶にハイドレート包接ガスを採取した.また、堆 積物ガスに関しては、半割した堆積物コアの断面 から、天然ガスハイドレートの存在しない部分の 堆積物に含まれるガスを、ヘッドスペースガス法 により採取した.その後、ハイドレート包接ガス と堆積物ガスを、シリンジインジェクションによ り安定同位体比質量分析装置(CF-IRMS、Delta V、 Thermo Fisher Scientific)に導入し、ハイドレート 包接メタンおよび堆積物ガス中のメタンそれぞ れの炭素・水素安定同位体比について測定を行っ た.スケールについてはそれぞれ、V-PDB および V-SMOW を基準としたδ値に換算した.

3. 測定結果

炭素・水素の安定同位体比の結果を図1に示す. Δδ 値は、堆積物ガスの炭素・水素のそれぞれの δ 値からハイドレート包接ガスのそれぞれのδ値

図2 南湖盆 Kedr 泥火山頂上部の複雑な湖底地形図. ガスハイドレート含有堆積物コアが採取 された地点とそのコア名(記号■). △δ 値の関係からガスハイドレートの解離が示唆されてい る地点(記号•).

を差し引いた値として定義する.また,堆積物ガ スに関しては,ハイドレート包接ガスの採取深度 に最も近い位置のデータを用いた.図1からは, $\Delta\delta^{13}$ C と $\Delta\delta^{2}$ H との関係はばらつきが大きいもの の,ゆるやかな正の相関が認められる.

炭素安定同位体比に着目すると、 $\Delta\delta^{13}$ C は+2‰ 付近を中心に広く分布している.これに対し、水 素安定同位体比については、 $\Delta\delta^{2}$ H は+5‰付近が 全データの平均値である.すなわち、データの大 半は炭素・水素とも $\Delta\delta$ 値が正の値を示している. このことは、わずかな割合ではあるものの、相対 的に軽いメタンである ¹²CH₄ が、¹³CH₄ や CH₃²H よりもハイドレート包接ガスとして多く取り込 まれていることを示している.

ここで、南湖盆の Kedr 泥火山で得られたデー タに注目する. 一見すると他地点のデータと同様 の分布であるが、Δδ 値がゼロないし負の値を示 すデータが特定のコアでみられた.

4. 考察およびまとめ

まず,炭素安定同位体比に注目する.Δδ¹³Cは, 純粋なメタンハイドレートの生成時ではほぼゼ ロである¹⁾. また一方では, 多孔質体である珪藻 土をまぜて生成した細孔中のメタンハイドレー トの場合, Δδ¹³C は-1.1 ± 0.6‰との報告がある 3). ゲストガス安定同位体分別に及ぼす堆積物粒 子の細孔の効果については不明な部分が多いも のの, $\Delta\delta^{13}$ C が負の場合, 重いメタンである ¹³CH₄ をハイドレート包接ガスに取り込みやすい傾向 があることを示している.本研究の結果はΔδ¹³C の平均値が+2‰であり,ゼロでも負の値でもない ことから, 先行研究 1),3)とは異なっていた. これ らを踏まえると、現段階ではバイカル湖の天然ガ スハイドレートの状態を Δδ¹³C から議論するこ とはできない. 堆積物粒子に起因する何らかの未 知の要素が、ハイドレート包接メタンと堆積物中 のメタンとの間の炭素安定同位体分別に影響を 与えていると解釈される.

Annual Report on Snow and Ice Studies in Hokkaido

次に,水素安定同位体分別に注目する.本研究 のΔδ²Hの平均値は約+5‰付近であり,軽いメタ ンをハイドレート中に濃縮しやすい¹⁾との先行 研究の結果と定量的にも一致する.つまり,図1 におけるばらつきは大きいものの,メタンの水素 安定同位体比の測定結果は,現在のバイカル湖の 天然ガスハイドレートが周囲の環境とおおむね 平衡状態にあることを示している.

南湖盆の Kedr 泥火山の湖底地形図およびガス ハイドレート含有堆積物コアの採取箇所を図2 に示す. 2014 年から 2019 年までの間, Kedr 泥火 山では計 21 本のガスハイドレート含有堆積物コ アが採取されている. このうち, 図2に示した特 定の 5 本のガスハイドレート含有堆積物コア

(2015St1GC15, 2016St18GC1, 2016St18GC2, 2016St18GC6, 2019St66GC4) に関しては、図1で は Δδ 値が比較的小さいデータに相当する(記号 ◊). Δδ 値がゼロの場合, すなわちハイドレート 包接ガスと環境の堆積物ガスの安定同位体比が 等しいことを示し、これはガスハイドレートが今 まさに解離状態にあり,ハイドレート包接ガスそ のものを周辺環境に放出していると解釈される. 特に, ほぼ同一地点から得られた 2015St1GC15, 2016St18GC1, 2016St18GC2 の3本のガスハイド レート含有堆積物コアは, Kedr 泥火山中央の比 高10m程度のポックマーク地形から得られてい る.状況を解釈すると、例えばこのポックマーク では,深部からのガス供給が既に停止しており, 堆積物中のメタン濃度が低下した結果,ガスハイ ドレートが現在解離し始めている,などの状況が 考えられる.特に 2015St1GC15, 2016St18GC2の 2本の堆積物コアでは、ガスハイドレート結晶が 同一堆積物コア中に,深度方向に結晶構造I型,結 晶構造II型,結晶構造I型,の順に並んでおり4,5, またエタンの水素安定同位体比については,同一 コア中でも結晶構造Ⅱ型の方が結晶構造I型よ りもハイドレート包接ガスの δ²H が小さいこと が報告されている⁴⁾. Kedr 泥火山では,結晶構造 I型のメタン・エタン混合ガスハイドレートが分 解すると同時に、 δ^{2} Hの小さいエタンを包接した

結晶構造 II 型のガスハイドレートの二次生成が 示唆される^の. 今後は、メタンだけでなくエタン や CO₂ の安定同位体比も含めて、ゲストガス安 定同位体分別が天然ガスハイドレートの状態を 知るための指標になると考えられる.

【謝辞】

真空ライン等の実験系の一部については,科学 研究費(基盤研究 B:26303021)の助成を受けた.

【参考文献】

- Hachikubo, A., Kosaka, T., Kida, M., Krylov, A., Sakagami, H., Minami, H., Takahashi, N. and Shoji, H. (2007): Isotopic fractionation of methane and ethane hydrates between gas and hydrate phases. *Geophys. Res. Lett*, **34**, L21502, doi:10.1029/2007GL030557.
- Ozeki, T., Kikuchi, Y., Takeya, S. and Hachikubo, A. (2018): Phase equilibrium of isotopologue methane hydrates enclathrated CH₃D and CD₄. *J. Chem. Eng. Data*, **63**(6), 2266–2270, doi: 10.1021/acs.jced.8b00203.
- 3) 太田有香,八久保晶弘,竹谷敏(2016):細 孔中に生成したメタンハイドレートの熱分 析およびメタン安定同位体分析.雪氷,78(5), 281-290.
- 4) 八久保晶弘,ほか10名(2016):バイカル湖 南湖盆の結晶構造 II 型天然ガスハイドレ ート.北海道の雪氷,35,95-98.
- 5) 八久保晶弘, ほか9名(2017): 天然ガスハ イドレート生成時のメタン炭素安定同位体 分別―バイカル湖南湖盆のハイドレート含 有湖底堆積物の例―. 北海道の雪氷, 36, 85-88.
- Hachikubo, A., and 10 others (2020): Characteristics of hydrate-bound gas retrieved at the Kedr mud volcano (southern Lake Baikal). *Sci. Rep.*, **10**, 14747, doi:10.1038/s41598-020-71410-2