バイカル湖南湖盆の結晶構造 II 型天然ガスハイドレート Structure II natural gas hydrate retrieved at the South Baikal Basin

八久保晶弘,太田有香,森下裕士(北見工業大学),

Oleg Khlystov (ロシア科学アカデミーシベリア支部陸水学研究所),

Gennadiy Kalmychkov (ロシア科学アカデミーシベリア支部地球化学研究所),

Marc De Batist (ゲント大学),坂上寛敏,南尚嗣,山下聡,髙橋信夫,

庄子仁(北見工業大学)

Akihiro Hachikubo, Yuka Oota, Yuji Morishita, Oleg Khlystov, Gennadiy Kalmychkov, Marc De Batist, Hirotoshi Sakagami, Hirotsugu Minami, Satoshi Yamashita, Nobuo Takahashi, Hitoshi Shoji

1. はじめに

ロシアのバイカル湖は世界で唯一,淡水環境下で天然ガスハイドレート(GH)が存 在する場所である. 1997年の Baikal Drilling Project で南湖盆の深層掘削地点(図 1 中の緑四角)から天然 GH が回収されて以来,湖底表層堆積物中に存在するいわゆる表 層型 GH の発見は 2015年までに 40ヶ所近くに及んでいる. バイカル湖天然 GH に関 するトピックスの一つに,メタン(C₁)・エタン(C₂)混合系の結晶構造 II 型結晶の発 見¹⁾がある.純粋な C₁ハイドレート, C₂ハイドレートは構造 I 型であるのに対し,あ る一定の混合比の C₁+C₂混合系では構造 II 型となることが人工合成によって知られて いたが²⁻³,このガス組成での自然界における発見はバイカル湖が最初である.中央湖 盆南部の Kukuy 湖底峡谷ではいくつもの泥火山が存在し,そのうちの一つ,Kukuy K-2 泥火山では構造 II 型結晶とその下部に構造 I 型結晶が連なる産状の堆積物コアが多数 採取されている.これらの結晶については粉末 X 線回折測定(PXRD)⁴),核磁気共鳴

(NMR)分光法¹⁾,解離ガス分析^{5,6)},ラマン分光法および熱分析⁷⁾が実施され,その結晶特性が明らかになるとともに,どのようにして構造 I型・II型が生成し共存しているのか,さらに謎が深まっている.

北見工業大学環境・エネルギー研究推進センターは、ロシア科学アカデミーシベリ ア支部陸水学研究所およびゲント大学との共同研究体制の下, Multi-phase Gas Hydrate Project (MHP)を継続しており、長年にわたる調査の結果、表層型 GH がバイカル湖 の広範囲にわたって分布していることが明らかになりつつある⁸⁾.構造 II 型結晶は Kukuy K-2 泥火山だけではなく、近隣数 km 圏内の K-3 および K-4 の両泥火山、K-P と名付けられたポックマーク、また K-2 泥火山から南西 10km にある K-10 泥火山でも 見つかっている.また、K-2 泥火山から 90km 離れた南湖盆の PosolBank ガス湧出域で も、Kukuy と同様の構造 I型・II 型の共存がみられ、2015 年には PosolBank ガス湧出 域からさらに南西 80km の Kedrovaya と名付けられた地点(図 1) にて構造 II 型結晶 が大量に採取された.すなわち、こうした産状が決してローカルな現象によるもので はないことを示唆している.

ロシア陸水学研究所所属の調査船 G. Yu. Vereshchagin 号による VER15-03 調査航海 (2015 年 8 月)では、中央湖盆および南湖盆の複数地点で新たに天然 GH が採取され た.本報告では、南湖盆の Kedrovaya (水深約 600m)で得られた GH 結晶と堆積物ガ ス、またこれらのガス組成、メタン・エタンの水素同位体比について報告する.

- 95 -

図1バイカル湖のガスハイドレート採取地点,およびそのうち結晶構造 II 型結晶 が採取された6地点(左), KedrovayaにおけるGH含有堆積物コアの例(右).

2. 船上での試料採取方法

マルチビーム測深機によって得られた湖底地形データを元に湖底堆積物コアリング 地点を設定し,重力コアラー用いて湖底表層堆積物コアを採取した.コアリングは計 19回実施され,そのうち9回は天然GHが入っていた.堆積物コアはコアラー揚収後 速やかに半割し,堆積物中の天然GH結晶の一部は液体窒素温度下で保存し,PXRDで 結晶構造を同定した.残りは水上置換により容積5mLのバイアル瓶に解離ガスを採取 した.また,ヘッドスペースガス法によりGHの存在しない部分の堆積物に含まれるガ スを採取した.これらの試料については,ガスクロマトグラフでガス組成を,また安 定同位体比質量分析装置でC1・C2の炭素・水素両安定同位体比を測定した.

3. ガス分析結果および考察

堆積物ガスおよび GH 解離ガスに関する、C₂、プロパン(C₃)に対する C₁のモル比 の深度依存性を図 2 に示す.なお、C₃ 濃度は一部の例外を除いて炭化水素ガス全体の 100 ppm 以下であったため、横軸は実質的に C₁/C₂比とみてよい.図中の黄色領域は構 造 II 型,水色領域は構造 I 型の GH が出現するガス組成であることを示している.GH を含まないコアでは C₁/(C₂+C₃)が約 30~1,000 であるのに対し、GH コア(図中の赤点 線)では約 10~80 であり、GH コアの堆積物ガスは明らかに C₂リッチである.また、 C₁/(C₂+C₃)は深度方向に減少する傾向があり、ごく浅層で生成する微生物起源 C₁と、 深部から供給される熱分解起源 C₁・C₂との混合によるものと考えられる.GH コアの みに注目すると(図 2 右)、GH 解離ガスの C₁/(C₂+C₃)は構造 I 型で約 30~50、構造 II 型で約 6~7 である.特に後者の値がほぼ一定であるという特徴が際立ち、また Kukuy

図2 堆積物ガスおよび GH 解離ガスのエタン・プロパンに対するメタンの割合.赤 点線は GH 含有コア.黄色・水色領域はそれぞれ構造 II 型,構造 I 型の範囲を示す.

泥火山群や PosolBank ガス湧出域に産出する構造 II 型とガス組成がほぼ同じである.

Kedrovaya 以外の従来の構造 II 型産出域では,直径数 mm の粒状結晶の集合体である構造 II 型が常に GH 層の上部にあり,その下部に塊状・層状の構造 I 型が連続ないし不連続に存在する産状がほとんどであった.しかしながら,Kedrovaya では St2GC15 コア(図 1)のように浅層から構造 I 型, II 型, I 型と並ぶケースもあり,また塊状の構造 II 型(St2GC8 コア,図 1)もみられた.

 C_1 , C_2 の水素同位体比(δ D)を図3に示した. $C_1\delta$ Dでは,結晶構造を問わずGH 解離ガスは堆積物ガスよりも約5‰小さく、メタン安定同位体分別⁹からGHは周囲の ガスから生成した、あるいは周囲と平衡状態にあると判断される.一方、St1GC15コ アではそのような差がみられず、例えば解離過程にあるなどの可能性がある.一方、 $C_2\delta$ Dでは、同一地点における構造I型よりも構造II型の方が値は小さく、Kukuy K-2 泥火山での報告例⁵と同様である.実験研究では、 C_1+C_2 混合系GHの解離時に $C_2\delta$ Dの小さい(軽い) C_2 をGH相に濃縮する現象が確認されている¹⁰.また、 C_1+C_2 混 合系ではGH生成時に C_2 が濃縮されやすいことから、構造I型結晶が何らかの条件で 解離して、 δ Dの小さい C_2 を濃縮した構造II型結晶が二次的に生成した、と考えられ る.現在、他の構造II型産出域でも共通するような、地質学的な構造I型結晶解離イ ベントが存在した可能性について検討中である.

図3メタンおよびエタンの水素同位体比の深さプロファイル.なお,St1GC8 コア とSt1GC19 コアはほぼ同一地点.

謝辞

調査船 G. Yu. Vereshchagin 号の乗組員ならびに乗船研究者・学生の皆様にはお世話 になりました.本研究は科学研究費(基盤研究 B: 24404026; 26303021; 16H05760)の 助成を受けて実施された.

【参考・引用文献】

1) Kida, M., et al., 2006: Geophys. Res. Lett., 33, L24603, doi:10.1029/2006GL028296.

- 2) Subramanian, S., et al., 2000a: Chem. Eng. Sci., 55, 1981–1999.
- 3) Subramanian, S., et al., 2000b: Chem. Eng. Sci., 55, 5763-5771.
- 4) Manakov, A. Yu., et al., 2013: Russ. Geol. Geophys., 54, 475-482.
- 5) Hachikubo, A., et al., 2009: Geophys. Res. Lett., 36, L18504, doi:10.1029/ 2009GL039805.
- 6) Hachikubo, A., et al., 2010: Geo-Mar. Lett., 30, 321-329.
- 7) Hachikubo, A., et al., 2012: Geo-Mar. Lett., 32, 419-426.
- 8) Khlystov, O., et al., 2012: J. Asian Earth Sci., 62, 162-166.
- Hachikubo, A., et al., 2007: Geophys. Res. Lett., 34, L21502, doi:10.1029/ 2007GL030557.
- 10) 太田有香ほか, 2016: 北海道の雪氷, 35, ibid.