南極ラングホブデ氷河における表面流動速度測定と氷厚探査

Measurements of flow velocity and ice thickness at the Langhovde Glacier, Antarctica

福田 武博(北海道大学 大学院環境科学院・低温科学研究所) 杉山 慎(北海道大学 低温科学研究所) 澤柿 教伸(北海道大学 地球環境科学研究科) Takehiro Fukuda, Shin Sugiyama, Takanobu Sawagaki

1. はじめに

近年の衛星観測技術の進歩により、大規模な棚氷の崩壊に伴う氷河流動の加速¹⁾や、 広範囲に及ぶ溢流氷河の表面標高低下²⁾など,氷床沿岸部での顕著な氷河変動が多く報 告されている.末端が海洋に接している氷河では、潮位変化が棚氷にかかる浮力を変 化させて氷河流動に影響を及ぼすという報告もあり³⁾、「海洋」と「棚氷」の相互作用 は非常に重要なものである.この相互作用解明を目的とし、我々は第53次南極地域観 測の一つとして、宗谷海岸のラングホブデ氷河において氷床・棚氷および海洋での観測 を行った.2011年12月から2012年2月にかけて行った野外観測で、熱水掘削システ ム⁴⁾を用いて氷河を貫通する掘削を行い、氷河底面の映像や水圧変化などのデータを得 た^{5),6)}.本報では、潮位変化と流動速度の関係、および長期的な流動場の変化、そし て氷厚と表面高度の測定結果を報告する.

2. 手法

2.1. 表面流動速度測定

ラングホブデ氷河の末端から約 3km の範囲で,高精度 GPS を用いて流動速度を測定 した.また,過去の流動速度変動履歴を明らかにするため,衛星画像を用いた解析も 行った.

2.1.1. GPS による流動測定

2012年1月3日から1月29日にかけて、氷河末端や熱水掘削地点の近傍など4か 所でGPSによる氷河表面の流動速度観測を行った(図-1:GPS1-4).1.5 m長のポール をGPS アンテナ設置架台とし、強風や融解の影響でアンテナが動かないよう氷河表面 に1.0 m以上埋め込んで観測局とした.氷河左岸の露岩上にはGPSの基準局を設置し (図-1:GPS Fix),スタティック干渉測位により1時間毎に各観測局の座標を測位した. 過去の同様な観測によれば、測定誤差は水平方向に2-3 mm、垂直方向に約10 mm で ある.なお観測期間終了後は、2 地点の観測局(GPS2,4)を現場に残置して測定を継続 している.このデータは2013年に回収予定である.

2.1.2. 衛星画像解析

2006, 07, 10 年に撮影された, ALOS (Advanced Land Observing Satellite)に搭載された PRISM (パンクロマチック立体視センサー) による衛星画像を解析した. いずれの画像も,氷河表面が積雪でおおわれていない 11 月に撮影された画像を選んだ.異なる時期に撮影された 2 枚の画像組 (2006-07 年と 2007-10 年)について,それぞれ共通して確認できる氷河上の特徴 (クレバスや融解水がたまった池など)を 100 地点以上選択した.地理情報システム ArcGIS (ESRI)を用いて得た位置座標から,1年間ない

し3年間の流動速度を求めた. 位置座標の測定に起因する流動速度の誤差は最大で 1.6 m a^{-1} であった.

図-1 流動速度と氷厚の観測地 点

GPS 測定の観測局(●: GPS1-4)と基準局(●:GPS Fix), 氷厚測定線(▼, ×:P1-5), 熱水掘削地点 (□:BH1-4)を示す. GPS1-4の水平流動速度ベ クトルを矢印で表す.

2.2. 氷厚測定

氷河を横断する測定線を設定し(図-1),アイスレーダ(Ohio 州立大学製作)を用いた 氷厚探査を行った.このアイスレーダは 5 MHz の電磁波パルスを発生させる送信機と 受信機からなり,氷を伝播し氷河底面で反射した電磁波を受信するものである.反射 波が受信機に到達する遅延時間をもとに,測定地点での氷厚を決定した.本観測では 送受信機間の距離は 20 m とし,測定線上を約 100 m 間隔で氷厚を測定した.

3. 結果

3.1. 表面流動速度測定

3.1.1.GPS による流動測定結果

GPS2 において観測された水平流 動速度および垂直変位を図-2 に示 す.図には掘削孔(図-1:BH3)で測 定した氷河底面水圧も併せて示す. 1日2回のピークを持つ潮位変化に 起因する氷河底面の水圧変化およ び垂直方向の変位が観測された.水 平流動速度についても,潮位変化と 同じく1日2回の周期をもつこと が観察された.しかし,潮位のピー クと水平流動速度のピークは同期 しておらず,潮位が極少値となる直 前に流動速度が極大値となってい た.また,その流動速度変化は数倍 にも及び,2m程度の僅かな海水

1月20-27日のBH2における氷河底面水圧 の変化(上)と,GPS2における水平流動速度 (中)および垂直変位(下)を示す.

位の変化が流動速度に大きな影響を与えることが明らかになった.

3.1.2. 衛星画像解析によって得られた流動速度の比較

人工衛星画像によって得られた流動速度分布を図-3 に示す.氷河中央末端部における最大流動速度は,2006/07 年では134 m a⁻¹であったが,2007/10 年には123 m a⁻¹に低下していた.末端部だけでなく,氷河全域にわたって流動速度の減少が確認された.

図-3 衛星画像解析による氷河流動速度分布

(左)2006/07年,(右)2007/10年の流動速度分布.追跡した特徴の流動速度を矢印で示す.流動速度の分布を20ma⁻¹間隔の等値線で表す.

また, GPS 測定地点における過去の流動速度を表-1 に比較する. GPS2 および 3 の地 点において, GPS 観測による流動速度は,衛星画像解析によって得られた 2007/10 年 の流動速度よりも約 10 m a⁻¹増加していた.一方,上流に位置する GPS4 の地点では 大きな変化は確認できなかった(表-1).このことより,観測地の流動速度分布に変位 が生じていることが確認できた.

表−1 GPS 観測と衛星画像解析によって得られた流動速度の比較

GPS1の地点は2007年までは氷河が存在せず比較ができないので、表では省略した.

	2006- 07(衛星画像)	2007-10(衛星画像)	2012(GPS)	
GPS2	118.9	105.9	112.2	
GPS3	109.7	100.0	110.5	
GPS4	110.2	100.8	101.8	(
				(ma

3.2. 氷厚測定結果

深さ 400 m の熱水掘削を行った地点(BH2)において,反射波遅延時間は 4.35 µs で あった.このことから,氷中の電磁波伝播速度は 181.1 m µs⁻¹と求められた.この速 度を用いて,各地点で観測された遅延時間より氷厚を決定した.クレバス帯や末端付 近においては,明瞭な反射波を確認できない傾向が強かった.これは,電磁波が氷河 底面だけではなく,氷一空気界面でも反射してノイズを与えるためと考えられる.反 射波が確認できた地点に限ると,氷厚は末端付近でおよそ 250 m,観測地上流端で約 400 m であった(図-4).

図-4 氷厚測定結果

横軸を測定線東端からの距離,縦軸を標高とした, 氷厚測定線 P1-5 における氷河横断面.表面地形 (実線),測定線東端(▼),測定された氷厚(○), 熱水掘削地点(□:BH1-4)を示す.破線は静水圧 平衡を仮定したときの氷厚である.測定された氷 厚が破線よりも上にある場合,氷河が接地してい ることを意味する.

謝辞

ラングホブデ氷河観測にあたり, 様々な支援を受けた第52次および第 53次日本南極地域観測隊のみなさま, 観測装置の準備や測定へのアドバイ スをいただいた北海道大学低温科学 研究所 青木茂准教授と国立極地研究 所 伊村智教授に厚くお礼申しあげま す.本研究は第53次日本南極地域観 測隊の一般研究観測として実施し, その一部に科研費(挑戦的萌芽研究 23651002)と日本極地研究振興会の 助成を受けた.ここにお礼申し上げ ます.

参考・引用文献

 Scambos, T. A., J. A. Bohlander, C. A. Shuman and P. Skvarca, 2004: Glacier ac-celeration and thinning after ice shelf collapse in the Larsen B embayment, Ant-arctica, doi:10.1029/2004GL020670.

Geophysical Research Letters, **31**, L18402,

- Pritchard, H. D., R. J. Arthern, D. G. Vaughan and L. A. Edward, 2009: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets, *Nature*, 461, 971 975.
- Aðalgeirsdóttir, G. and 6 others, 2008: Tidal influence on Rutford Ice Stream, West Antarctica: observations of surface flow and basal processes from closely spaced GPS and passive seismic stations. *Journal of Glaciology*, 54 (187), 715-724.
- 4) Tsutaki, S. and S. Sugiyama. 2009. Development of a hot water drilling system for subglacial and englacial measurements. *Bulletin of Glaciological Research*, **27**, 7-14.
- 5) 杉山慎,澤柿教伸,福田武博, 2012: 南極ラングホブデ氷河における熱水掘削, 北海道の雪氷, 31.
- 6) 澤柿教伸, 杉山慎, 福田武博, 2012: 南極ラングホブデ氷河における熱水掘削孔を用いたビデオ観察, 北海道の雪氷, 31.