オホーツク海沿岸域の海氷の漂流メカニズム

*猪上 淳(オホーツク・ガリンコタワー株式会社)

1. はじめに

海氷ができる比較的低緯度の海は,海氷の生産量が 面積として反映されやすいため,地球温暖化など気候 変動のパロメーターの一つとして考えられている.そ の中でもオホーツク海は大気大循環に影響を与える領 域の一つとして知られ (Honda et al. 1999),これまで 大気・海洋・海氷の関係者を中心に関心を集めてきた.

オホーツク海の海氷の多寡はローカルな気候変動に も影響を及ぼし、特にオホーツク海沿岸部の気温は海 氷の有無により著しく変化することが知られている (中村 1996)、沿岸域が海氷で覆われると、このような 局地気候の変化だけでなく、漁船の操業など沿岸地域 に住む人々の日常生活にも影響が及ぶため、海氷との 共生が重要な課題となっている。 例えば、オホーツク 海沿岸の重要な漁業の一つにサケ漁があげられるが. 海氷の影響を直接受けないように放流操作をすること で、サケの回帰率が向上することが分かっている(清 水 2002). また、ホタテ稚貝に関しても同様のことが 指摘されている (青田 1986). したがって、海氷の動態 とそれを取り巻く気象・海況・水産環境との関係を調 べることは極めて重要であり、特に沿岸域の海氷の漂 流メカニズムの理解とその予測は、地域社会全体に役 立つ知識・情報を提供することにつながる.

これまで、オホーツク海氷の漂流過程に関する研究 は、北海道大学低温科学研究所附属流氷研究施設の流 氷観測レーダを用いて行なわれてきた.例えば田畑ら (1967)は、約1時間間隔の画像から特徴のある流氷の 軌跡を調べ、流氷が緩いS字をなして南東方向へ流れ るのは潮流の影響であることを推察している.また、 河村ら(1975)は特徴的な氷版を追跡し、沿岸と平行な 南東流が存在することを示している.さらに、風速が 海氷の漂流に与える影響も田畑ら(1970)などによっ て調べられている.しかしながら、これまでの研究は 潮流・海流・風速のそれぞれが漂流速度に対してどれ だけ寄与するのかという定量的な解析が行なわれてこ なかったため、気候変動予測のための海氷のモデリン グにおいて極めて重要である海氷の漂流過程に関する 総合的な理解にまでは至っていない.

そこで本研究では上記の問題点を踏まえ,時間・空 間分解能に優れた流氷レーダを運用しているオホーツ ク・ガリンコタワー(株)のXバンドレーダの画像デー タを使用し,オホーツク海沿岸域における海氷の漂流

メカニズムを詳細に調べることを試みた.

2. 解析手法

オホーツク・ガリンコタワー(株)では氷海状況の基 礎データの取得を行なうため,近距離高分解能型の X バンドレーダ(バルス幅 100ns; 公称距離分解能 15m) を設置し 1996 年から運用してきた(図 1). 空中線か ら発信された電波は,海氷等の物体に反射され,その 一部を空中線が受信する.不要信号(雨,雪,雲,海面 反射など)は信号処理装置で抑制され,図 2 のような 256 段階のグレースケール画像として記録される(実 効空間分解能約 27m). 通常観測では 1 時間毎に画像 を収集しているが,2003 年 2 月から 3 月にかけては海 氷の漂流過程を詳しく調べる目的で記録間隔を 10 分 に設定した.本研究では解析期間を 2003 年 2 月 13 日 0 時から 3 月 26 日 23 時までとし,以下の手法で解析 を行なった.

海氷の漂流速度の見積りは面相関法を用いた (Kimura and Wakatsuchi 2000). これは画像内に設定した窓画 像を参照画像とし、これと最も相関の良い領域を次の 時刻における画像から探し出すことにより移動距離を 求める手法である.ここで、画像サイズ $M \times N$ の窓画 像W(m,n)と次の時刻における対象画像領域T(m,n)の相互相関係数Cは以下のように表される.

$$C = \frac{\sum_{j=1}^{M} \sum_{i=1}^{N} \phi(i,j)\varphi(i,j)}{\sqrt{\sum_{j=1}^{M} \sum_{i=1}^{N} \phi(i,j)^2 \sum_{j=1}^{M} \sum_{i=1}^{N} \varphi(i,j)^2}}$$
(1)

^{*} 猪上 淳 (INOUE Jun): オホーツク・ガリンコタワー (株) 〒 094-0023 叙別市元叙別 25 番地 2 先 海洋交洗館 Phone: 01582-3-1100 (代表) URL: http://www.o-tower.co.jp

図 2: レーダ画像の例 (2003年3月5日12時).

ただし,

$$\phi(i,j) = W(i,j) - \left(\sum_{j=1}^{M} \sum_{i=1}^{N} W(i,j)\right) / (M \times N)$$
 (2)

$$\varphi(i,j) = T(i,j) - \left(\sum_{j=1}^{M} \sum_{i=1}^{N} T(i,j)\right) / (M \times N) \quad (3)$$

このとき、Cが最大となる画像間の位置関係が移動ベ クトルとして与えられる.ただし、窓画像あるいは対 象画像中に海氷が存在しない場合、及び雲や降雪の影 響が反射強度として観測されている場合は、移動ベク トルを正確に計算できない.そこで計算精度を保つた めにCが0.6以上の場合にのみ計算を行うことにした. 画像上での海氷は基本的に白く表示されるが、凹凸の 少ない平らな氷版は海面と同様に反射強度が弱く、画 像上ではしばしば黒く表示される(図2).しかし、面 相関法では領域内の輝度分布が重要であるため、画像 上の海氷の濃淡は前後の画像でその性質が変化してい なければ問題はない.

流氷観測用のレーダデータにこのような手法を適用 した例として石田 (1975) があるが、画像の時間間隔が 3 時間であったため、海氷の漂流に影響を及ぼす風や 潮流などの効果を適切に抽出する解析は行なわれてい ない. 画像の時間間隔が長すぎると、上記の問題点に 加え、海氷自体の回転や内部応力の影響が大きくなり、 漂流速度を求めるための良い相関関係が得られなくな る. また、逆に時間間隔が短すぎると画像の空間分解 能以下の漂流速度を算出できない.以上の影響を考慮 し、本解析では30 分の時間間隔が最適であると判断し た. 窓画像サイズは75×75 ビクセル (約2×2 km) と し、メソγスケール以下 (≤ 2 km)の海氷の動態に着目 した解析を行なった.

図 3: 海氷の移動ベクトルと反射強度(陰影部)の水平 分布.(a)に示されている矩形領域は平均移動速度の 算出に用いた領域を表す.

3. 解析結果

図3に海氷最盛期の漂流ペクトルの水平分布を示す. ベクトルは海氷が30分間に進む方向と速度を表し,陰 影部は主に海氷が存在する部分を示す.3月5日にお いて,北側の観測領域では15 cm s⁻¹の速度で海氷域 全体が西南西へ移動しているが,東側の観測領域では 速度はゼロである(図3 a).これは沿岸定着氷と漂流 してきた海氷との間に強いシア領域が存在することを 意味する.実際,5時間後の海氷の分布(図2)による と,北側の2×2 kmの氷板は東方へ約3km移動して いるが,沿岸域の氷板は停滞しているのが分かる.

3月8日から3月13日までは観測領域全体が海氷 で覆われ、漂流速度は極端に遅くなった (~0 cm s⁻¹). その結果、海氷間の内部応力が強化され氷板に亀裂が 入る様子が確認できる (図 3 b).海氷が再び大きく動 き出すのは、沿岸から約1km沖で岸と並行に大きな割 れ目が形成された3月14日である (図 3 c).3月16 日には移動速度が30 cm s⁻¹に達し、観測領域内の海 氷は次第に減少し始めた (図 3 d).

4. 潮流と風速の影響

図4に解析期間中の海氷の平均移動速度とレーダサ イト(海抜40m)で観測された風速の東西・南北成分 の時系列を示す.漂流速度は海氷が停滞した期間(3)

図 4: 漂流速度と風速の各成分の時系列. 太線は 25 時 間移動平均.

月8~13日)を除き,明瞭な日周期成分が卓越している (図4a.c). これには潮流の影響あるいは日変化する局 地風(海陸風)の影響が考えられる.また,一日以上の スケールに着目すると(図4太線:25時間移動平均), 漂流速度は総観規模の風(一般風)と良く対応する(図 4 b.d).

そこで海氷の移動速度を潮流と風速でどれだけ説明 できるかを調べるため、図3(a)中の矩形内で領域平 均した漂流速度に対して調和解析を行なった。潮流は 潮汐波に伴って現れるものであるから、ここで東西方 向の海氷の移動速度をUとすると、

$$U = \sum_{i} f_i U_i \cos(V_{i(\sigma_i)} + u_i - \kappa_i) + U_0 \qquad (4)$$

のように*i* 種類の分潮の変動の和として表すことがで きる. ここで f_i , u_i は月の運動から定まる因数, V_i は 一定の割合 σ_i で増加する量, U_i と κ_i は振幅と遅角, U_0 は残差流である.本研究の調和解析で求める分潮 は主要四大分潮である M2(周期 12.42 時間)・S2(周期 12.00 時間)・K1(周期 23.93 時間), O1(周期 25.82 時 間) とし,各分潮の U_i , κ_i , U_0 は最小自乗法で求める.

残差流 U_0 は解析期間中の平均移動速度を表すが、これには長周期の潮流・海流・気象的要因が含まれている. しかし図4 で示した通り、漂流速度と風速には明瞭な相関関係が認められるため、一般風 (\overline{W}_u) と局地風 ($W'_u = W_u - \overline{W}_u$)を説明変数として式 (4) に組み込んだ.

$$U = \sum_{i} f_i U_i \cos(V_{i(\sigma_i)} + u_i - \kappa_i) + C_D(\overline{W_u} + W'_u) + U'_0 \quad (5)$$

ここで C_D は漂流速度に対する風速の風圧係数, U'_0 は風の影響を除いた残差流である.式(5)を用いた調 和解析は3月13日0時を基準とし、流氷の動きが活 発な3月7日23時までのデータを使用した.また、漂 流速度の振幅が再び大きくなる3月16日以降のデー タは調和解析の検証用のデータとして使用した.

図 5: 各分潮流の漂流楕円と残差流ベクトル.

各分潮流について東西・南北成分を合成した海氷の "漂流楕円"と残差流ベクトルを図5に示す。海氷の移 動は北西-南東方向の日周潮流(K1及びO1)が卓越し、 その影響力は半日周潮の約3倍に相当する。また残差 流は南南東向きに3.3 cm s⁻¹であるが、日周潮の振幅 に比べて小さい。なお各分潮の流向はM2分潮を除き 時計回りであった。

調和解析における東西成分と南北成分の相関係数は それぞれ 0.76 と 0.72 で、式 (5) による予測値は観測値 を良く再現している (図 6 a-c). そこで, 式 (5) におけ る潮流・一般風・局地風の寄与を調べると(図6bd)。 漂流速度の日変動は局地風よりも潮流の影響を強く受 けていることが分かる、潮流は月齢によって変化し大 潮の前後で強くなるため、漂流速度も大潮前後で振幅 が大きくなる.一方、一般風の効果は東西成分に強く 作用し、小潮時には一般風の効果が潮流の効果を上回 り、大潮時には潮流の効果と同程度になる (図 6 b). ま た, 紋別では西風の頻度が高いことから, 風速の南北 成分の効果は潮流の効果よりも小さい(図6d).以上 の特徴は、調和解析に使用しなかった3月16日以降 のデータにも該当することから、漂流速度の大部分は 潮流の効果と風応力のバランスで説明できることが分 かる

5. 考察

調和解析によって得られた漂流楕円から,海氷の運動は半日周潮よりも日周潮が卓越することが示されたが(図5),これは紋別沖の潮汐が顕著な日周潮型であることを示唆する.宗谷曖流域での潮流の特性に関して,Aota and Matsuyama(1987)はオホーツク海沿岸の猿払で係留計を用いた測流を行ない,日周期成分のK1・O1分潮が半日周期成分のM2・S2分潮より3倍以上も大きく,直線的な往復運動に近い潮流楕円が特徴であることを示した.また,青田と河村(1979)は紋別沖の流氷下の海流を調べた結果,潮流成分は冬季間を通じて日周潮のK1・O1が卓越していることを明らかにした.このような特徴は本解析で得られた漂流楕

図 6: 漂流速度の各成分における観測値 (太線) と予測 値 (細線) (a·c) と, 予測値における潮流 (太線), 一般風 (点線), 局地風 (細線) の寄与 (b·d).

円の特徴と良く一致することから,海氷の漂流予測に おいて潮流が重要なバラメータの一つであることが分 かる.

青田と河村 (1979) はさらに、流氷下の宗谷暖流の恒 流成分 (残差流) は、冬季間を通じて海岸線にほぼ平行 な南南東から南東流であることを示し、流氷最盛期の 流速は 4.5 cm s⁻¹ と非常に遅いことを明らかにした. したがって、本解析で得られた漂流速度の残差流成分 U'_0 (南南東流 3.3 cm s⁻¹) は、冬季宗谷暖流の影響を 受けたものと考えられる.

沿岸定着氷が著しく発達した3月8~13日は海氷が 運動できる空隙が極端に少ないため,式(5)では漂流 速度を予測できない.しかし,大規模な沿岸定着氷が 沖へ流され始める3月14~15日において,漂流速度の 予測値は観測値よりも過大評価しているものの,ビー クの時刻が一致している(図6a·c).これは西風応力 場に大潮起源の潮流が次第に強化された結果,14日に 大規模な沿岸定着氷の剥離が発生したと解釈すること ができる(図3c).これとは逆に,北風応力場に小潮起 源の弱い潮流が重なる時期(3月9日頃)では,大規模 な沿岸定着氷が形成され始めた(図3b).このように 潮流は沿岸定着氷の形成・剥離過程にとって重要なト リガーとして作用していることが示唆される.

漂流速度における潮流成分の振幅変動は大潮・小潮 の周期で決まるが、局地風の効果 ($C_DW'_u$) もこれと同 位相で変化している (図 6 b·d).本解析で得られた風 圧係数は 1.5% であり、夜間の陸風が強い場合 (例えば 西風 5m s⁻¹)では海氷は 8 cm s⁻¹ 程度で沖向きに流 されるため、漂流速度の予測において局地風の効果は 無視できない。局地風の強弱は海陸の温度コントラス トで決まるが、それを左右する開放水面の多寡は、潮 流によって励起される海氷運動の強弱に依存するはず である。例えば、3 月 8~13 日において局地風の効果が その他の期間に比べて小さくなるのは(図6bd),大 規模な沿岸定着氷が形成されたことによって海陸風を 駆動する開放水面が消滅したためと考えられる.この ように海氷の漂流過程における潮流の効果は,局地風 (海陸風)を変動させることで間接的にも海氷の動態に 影響を与えると考えられる.

6. まとめ

本研究ではオホーツク海沿岸の海氷の漂流過程を調 べるために, 紋別に設置された氷海レーダの画像を用 い, 面相関法によって海氷の移動ベクトルを求めた. 高 い時間・空間分解能で画像処理を行なった結果, 海氷 の漂流速度は日周期成分と風応力による影響が卓越し ていることが分かった.

そこで、見積もられた漂流速度に対して風速の効果 を組み込んだ調和解析を行なった、漂流速度に対する 潮流の効果は半日周潮よりも日周潮が卓越し、北西-南 東方向に最大±10 cm s⁻¹ 程度の振幅で往復運動する ことが明らかとなった、この漂流楕円の特徴は、過去 に紋別沖で行なわれた係留観測の潮流楕円の特徴とも 一致していた. 残差流成分は南南東向きに 3 cm s⁻¹ であるが、これは冬季宗谷暖流の流向・流速と矛盾せ ず、海流によっても海氷が流されていることが示され た.以上の結果は、流氷が緩いS字をなして南東進す るという田畑ら (1967) の結果を裏付けるものである. 風速に対する漂流速度の比(風圧係数)は1.5%であっ た. 一般風の効果は潮流の効果が弱くなる小潮時に相 対的に強く、大潮時では潮流の効果と同程度となった。 一方、局地風の効果は潮流・一般風の効果に比べて小 さいが 大潮・小潮の周期と同位相で振幅が変動して いた、これは潮流が励起する開放水面の多寡が、海陸 風の強弱に影響を及ぼすためと推察される.

本研究では沿岸域での海氷の漂流メカニズムを総合 的・定量的に解析したが、大規模な沿岸定着氷の形成・ 剥離の開始には風応力よりも潮流がトリガーとなるた め、沿岸域の海氷の動態予測において潮流が極めて重 要な役割を果たしていることが示された。

参考文献

青田昌秋・河村俊行 (1979), 海洋科学, 11, 189-195. 青田昌秋 (1986), 海洋科学, 18, 107-111.

Aota M. and M. Matsuyama (1987),

J. Oceanogr., 43, 276-282.

石田完 (1975), 低温科学, 物理篇, 33, 173-177.

河村俊行ほか (1975), 低温科学, 物理篇, 33, 179-190. Kimura N. and M. Wakatsuchi (2000),

Geophys. Res. Lett., **27**, 3735-3738. 清水幾太郎 (2002), 海洋号外, **30**, 178-186.

田畑忠司ほか (1967), 低温科学, 物理篇, 25, 233-239. 田畑忠司ほか (1970), 低温科学, 物理篇, 28, 301-310. 中村圭三 (1996), 天気, 43, 383-390.

Honda M. et al. (1999), J. Climate, 12, 3347-3358.