3次元構造物周辺の吹きだまり性状について

○佐伯 健一, 苫米地 司(北海道工業大学)

1. はじめに

構造物周辺に形成される吹きだまり現象は, 構造物の日常的な利用のための除排雪の他に緊 急時の避難経路確保などの防災面でも大きな問 題となる¹¹。この問題は,構造物の規模が大規 模化するに伴い,さらに大きな問題となる。こ れまでの吹きだまりに関する研究は,防雪柵な どの2次元的な構造物を対象とした蓄積が多く あるが,3次元構造物を対象とした研究の蓄積 が少ない。このようなことから,3次元構造物 を対象に屋外実験と模型雪を用いた風洞実験で 吹きだまり性状について実験的に検討した。

2. 研究方法

2.1 屋外実験

屋外実験は、試験体を縮尺 1/100に想定した 一辺が150mm の立方体をポリスチレンフォーム によって作製し、吹雪発生時に1時間屋外に設 置して吹きだまり状況を観察した。なお、試験 体は風向に対し正対となるよう風向計と対比し て設置した。

2.2模型雪を用いた風洞実験

(1) 実験装置

模型雪を用いた風洞実験は,測定部断面寸法 が縦80cm×横100cmの回流型粉体専用風洞装置 を用いて行った。本装置の測定部における風速 分布は,測定部風上に1 cmメッシュのスクリー ンを3枚設置して大気境界層に近似させてある。 また,インバーターの周波数を変化させること により送風機の回転数を制御し,最大風速は12 m/sである。

(2)模型雪

模型雪には含水率8.5%の活性白土を用いた²⁾。 一般に,堆積形状や限界摩擦風速の相似性を得 るためには,模型雪の粘着性が雪と同程度でな ければならない。本実験で用いた活性白土は, 雪と近似した安息角を示し,粘着性が雪と近似 していると考える。 (3) 吹きだまり係数

吹きだまりは,下記に示すような吹きだまり 係数で検討した³⁾。

$$S D = S D S / S D g$$

ここに、SD:吹きだまり係数 SDS:吹きだまり高 SDg:模型雪の供給量

SD>1の場合は吹きだまり部位, SD<1 の場合は吹き払い部位となる。

(4) 測定方法

建物周辺の堆積深は, レーザー変位計を取り 付けた自動計測装置を用いて, 0.1mm 単位で, 5mm メッシュに測定した。

(5)実験シリーズ

表1に試験体の概要を示す。表のように、試

表1 実験シリーズ

₩WB, DB, HB(mm)

験体は幅,奥行き,高さを変化させた19体の模型をポリスチレンフォームで作製した。実験条件は,風洞の運転時間を1時間とし,風洞内風速を6m/sとした。

3. 屋外実験と模型雪を用いた風洞実験結果と の対比

写真1に屋外実験結果および模型雪を用いた 風洞実験結果の対比を示す。なお,屋外実験は 試験体を実験シリーズと同様の風向に設置して 観察を行ったが,観察中に風向が変化したため 風洞実験との風向条件が一致しない結果となっ た。そのため屋外実験の風向にあわせた風洞実 験を行い両者を対比した。写真のように,両者 とも試験体周辺の吹きだまり性状は近似してい るのが分かる。特に,吹きだまり形成位置につ いてみると,両者とも近似した位置に形成され ている。

4. 模型雪を用いた風洞実験結果

各実験を行った結果,いずれの実験において も試験体前方および斜め後方に顕著な吹きだま りと試験体横に吹き払いが形成され,不均一な 堆積分布を示した。ここで最も変化の著しい試 験体の斜め後方の吹きだまりおよび試験体横に おける吹き払いの範囲と試験体の基本形状の変 化との関係を以下のように検討した。

吹きだまりおよび吹き払いの範囲を簡便的に 検討するために,吹きだまり係数SDが2以上 の範囲を図1のように設定し,その中心からの 距離をSDX,SDYとした。同様に,吹き払いはBS X,BSYとした。さらに,吹きだまりと試験体と の位置関係は,図のように試験体の風上隅角部 から吹きだまりの中心までの距離をLX,LYとし て捉えた。

1)幅(WB)が吹きだまりおよび吹き払い形成位 置に及ぼす影響

図2に奥行きDBおよび高さHBを50mmに固定し, 幅WBを 25mm~250mmに変化させた場合の吹きだ まり範囲SDXおよびSDY と吹き払い範囲BSXおよ びBSYの変化を示す。 図のようにSDYは WBが25 mm~150mmで増加し,その後減少する。SDXでは 顕著な傾向がみられなかった。BSXおよびBSYは WBが25mm~250mmと増加するに伴い増加し,BSX は BSYに比べて緩慢に増加する。

次に図2と同様の実験条件における吹きだま

写真1 風洞実験および屋外実験結果の一例

図1 吹きだまりおよび吹き払いの定義

図2 WBの一方向変化におけるSDX, SDY, BSX, BSY

りの中心と試験体との距離LXおよびLYの変化を 図3に示す。図のように、LXおよびLYはWBが25 mm~250mm と増加すると伴い増加および減少を 繰り返し顕著な傾向がみられなかった。

これらのことから、WBが吹きだまりおよび吹き払いに及ぼす影響について考えてみるとWBが 増大するに伴い吹きだまり範囲は増加した後減 少し、吹き払い範囲は緩慢な増加を示すことが 分かる。さらに、吹きだまりの中心は不規則に 移動することが分かる。

2)奥行き(DB)が吹きだまりおよび吹き払い形 成位置に及ぼす影響

図4に,幅WBおよび高さHBを50mmに固定し, 奥行きDB を25mm~250mmに変化させた場合の吹 きだまり範囲SDXおよびSDY と吹き払い範囲BSX およびBSYの変化を示す。図のようにSDXはDBが 25mm~50mmで増加をみせ,その後ほとんど一定 の値を示す。SDYはDBが25mm~150mmと増加する に伴い増加をみせ,その後ほとんど一定の値を 示す。BSXはDBが25mm~33mmで減少しその後一 定の値を示す。BSYはDBが25mm~100mm でほと んど一定の値を示し,その後150mm までにわず かに増加し,その後一定の値を示す。

次に、図4と同様の実験条件における吹きだ まりの中心と試験体との距離LXおよびLYの変化 を図5に示す。図のように、LXおよびLYはDBが 増加してもDB=50mmときのLYの値を除けばLXお よびLYは一定の値を示す。

これらのことから,DBが吹きだまりおよび吹 き払いに及ぼす影響について考えてみるとDBの 変化により吹きだまりおよび吹き払いの範囲は, 多少の変化を見せるがほとんど一定の値を示す ことが分かる。さらに,吹きだまりの中心から 試験体の距離は一定の値を示すことが分かる。 3)高さ(HB)が吹きだまりおよび吹き払い形成

位置に及ぼす影響

図6に、奥行きDBおよび幅WBを50mmに固定し、 高さHB を25mm~250mmに変化させた場合の吹き だまり範囲SDXおよびSDYと吹き払い範囲BSX お よびBSYの変化を示す。図のようにSDXはHBが25 mm~33mmと増加するに伴い緩慢に増加し、その 後減少する。SDYはHBが25mm~100mmと増加する に伴い減少する。BSXはHBが25mm~150mmと増加 するに伴いで増加し、その後一定の値を示す。

- 52 -

図5

DBの一方向変化におけるLX, LY

BSYは, HBが25mm~150mmと増加するに伴い急激 な増加し,その後緩慢な増加を示す。

次に、図6と同様の実験条件における吹きだ まりの中心と試験体との距離LXおよびLYの変化 を図7に示す。図のように、LYおよびLXはHBが 25mm~100mmと増加するに伴い増加する。

これらのことから、HBが吹きだまりおよび吹き払いに及ぼす影響について考えてみるとHBが 増加するに伴い吹きだまり範囲は減少し、吹き 払い範囲は増加する傾向を示す。さらに、吹き だまりの中心は風下および試験体横に移動し、 試験体から離れて形成されることが分かる。

構造物周辺の風速増加領域と模型雪を用いた風洞実験との対比

構造物の基本形状の変化による風速増加領域 と吹雪実験を対比すると以下のようになる⁴⁹。

1)構造物の幅における変化では,幅が増すこ とにより構造物の剥離流および吹き降ろしに影 響を与えて風速増加領域が大きくなる。さらに, 吹き払い範囲は風速増加領域と同様に増加する 傾向を示す。

2)構造物の奥行きにおける変化では,奥行き が増しても風速増加領域,吹きだまり範囲およ び吹き払い範囲のいずれにおいても大きな変化 がみられない。

3)構造物の高さにおける変化では、高さが増 すことにより構造物の剥離流および吹き降ろし に影響を与えて風速増加領域が大きくなる。さ らに、吹き払い範囲は風速増加領域と同様に増 加する傾向を示す。しかし、吹きだまり範囲は 減少する傾向を示す。

このように、風速増加領域は、構造物の基本 形状の変化に伴う吹き払い範囲および形成位置 と同様の傾向を示す。特に、この傾向は構造物 の幅および高さの変化に伴ってみられることか ら、構造物の吹き降ろしおよび剥離流による影 響を大きく受ているためと考える。従って、吹 きだまり範囲および吹き払い範囲について考え ると、風下周辺に吹きだまりが形成されること から、構造物周辺の風の情報により吹きだまり 分布の予測が可能と考える。

図6 HBの一方向変化におけるSDX, SDY, BSX, BSY

6.まとめ

本結果から,基本形状の変化において構造物 周辺の吹きだまり範囲および吹き払い範囲は幅 および高さにより大きく変化を示し,奥行きで は変化を示さなかった。このことから,構造物 の斜め後方の吹きだまりおよび試験体横の吹き 払いの変化は吹き降ろしおよび剥離流による変 化の要因が大きいと考える。今後は試験体周辺 の風速増加領域,風速鉛直分布等の測定や屋外 実験との比較検討が必要と考える。

【参考文献】

- 1) 苫米地 司他: 冬期間の避難施設の現状について, 第十回日本雪工学 会大会論文報告集, pp239~pp240, 1993.1
- 2) 苫米地 司: 模型雪を用いた風洞実験による吹きだまりの可視化,流 れの可視化 vol.9 NO.32, pp.39~44
- 3) 苫米地 司:風向の違いによる住棟街辺の吹きだまりに関する実験的 研究,北海道工業大学研究記要第15号pp.1
- 4) 風工学研究所:新·ビル風の知識, pp66~69