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Abstract

The growth of a glacial channel that is filled with water both completely and partially is
considered. The intensity of deepening of channels partially filled with water and the expansion of the
completely filled channels are calculated by similar formulas. The influence of channel meandering
and their cross-section nonroundness are also taken into account. The results of calculations turned
out fo be in agreement with known field data. Because we do not consider cold glaciers and plastic
deformation of ice, this work can be thought as an estimation of the maximum values of channel
growth rates. Taking into account only the potential energy of water, we obtained rather tolerable
results. Therefore, this simple approach can be considered as a rude estimation of ice melting rate on
the channel walls. In addition, a simplified model of a glacial ice-dammed lake was proposed.
According to this model, most of the lake water usually drains through the dam during only several

days, when the outburst occurs.

1. Introduction

During intensive ice melting, many small and
large streams flow on the surface of glaciers. Such
systems of supraglacial streams are usually arbores-
cent (Sugden and John, 1976). Englacial drainage sys-
tems are also reckoned to be arborescent (Fountain
and Walder, 1998). Obviously, in the glacial drainage
system there should be the parts without tributaries or
with negligible influence of them, which can be consid-
ered as a single channel. This work has purpose to
describe the growth of such single channels both inside
and on the surface of temperate glaciers.

In cold glaciers, a part of energy would be spent
for ice warming and consequently the rate of channel
growth would be less than that of temperate glaciers.
The same situation is in englacial channels due to the
ice deformation. Because here we do not take into
consideration ice creep and ice warming, this work
can be also considered as an attempt to estimate the
maximum values of channel growth rates.

In spite of taking into account only the potential
energy of water (including the potential energy of
water pressure) and neglecting plastic deformation of
ice, solar radiation, heat exchange with air etc., we
insist on the applicability of this approach for many
natural cases as a rude estimation of channel growth
(deepening) rates in ice. There are many natural
conditions, under which our approach would be rather
tolerable. For example, the growth of the englacial

conduits deep in the ice depends on the ice melting
rate and the rate of the conduit closure under the
weight of overburden ice (Rothlisberger, 1972). How-
ever, in the case of large water discharge the energy
dissipation inside the water flow is so high that the
resulting growth rate of the channel becomes signifi-
cantly higher than that of plastic deformation of ice.
We will describe this and another situations in detail
in the next chapter.

Unfortunately, there are very few works describ-
ing the behavior of glacial channels (especially the
changing of their geometrical parameters) and at the
same time presenting some field measurements of
their parameters and environment conditions. There-
fore, we encountered some difficulties in comparison
the obtained results with the field data to testify the
model because of scarcity of the data, and are looking
forward to have more measurements of glacial chan-
nels in various conditions.

2. Physical background

As flowing down a glacier, water gradually cre-
ates some drainage system. At the initial stage of its
formation, for example at the beginning of an ablation
period, the quantity of water is enough for filling up
the most of the inner conduits. It means that the
conduits of the englacial drainage system are usually
completely filled with water {under pressure) at this
time. As the conduits become bigger, the flow capac-
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ity of the drainage system increases. At some
moment, the water inflow into the drainage system
would not be sufficient to fill the conduits completely.
Thus, at first, the biggest conduits and then smaller
ones would become open channels and water would
flow only through the lowest parts of their cross
-sections. High water discharges usually accompany
with high rates of ice melting. Consequently, the
drainage conduits can become open again. That is
why the englacial conduits are usually open when the
channel slope or the water discharge is rather large
(Hooke, 1984). In any case, we can subdivide the
growing process of englacial conduits into two parts:
completely and partially filled by water, or pressure
and open channel regimes.

Let’s consider now what physical factors cause
glacial channels growth and what is the energy supply
for ice melting on the channel walls.

Water loses its potential energy as flowing along
a channel. Strictly speaking, we consider the potential
energy as the sum of the gravitational potential
energy and that of the water pressure. Obviously, in
open channels, the water pressure term is absent. The
lost potential energy is spent for an increase of the
kinetic energy of the water flow and the energy
dissipation inside the flow. The heat, which dissipates
in the water flow, is spent in turn for water warming,
ice melting and ice warming on the channel walls. It is
clear, that some other natural factors, for example
river deposits, can influence to the heat balance
between ice and water, but we do not take them into
account in this work.

At first, let’s consider for simplicity a single
straight channel with the same flow cross-sectional
area along it. It means that the kinetic energy of
water is constant along the conduit. Nevertheless,
even in real channels with complicated forms, in
which water flow velocity can change along the con-
duit, the influence of the kinetic energy inconstancy is
negligible if the channel is sufficiently long. It can be
clearer from the following example. If we suppose
that the entire potential energy changes into the
kinetic energy (that is obvious exaggeration), then
only after 10 m of lowering, the water flow velocity
would be 14 m s7* that is rather large value even for
huge streams. In the nature, the water velocity more
than several meters per second is rare. Thus, if the
height difference between the opposite points of a
channel is much more than several meters, change in
the kinetic energy of water is negligible comparing
with change in its potential energy.

Let’s suppose that some part of the energy is
spent for water warming. Because the heat flux from
water to ice is proportional to the temperature differ-
ence between ice and water, this heat flux would
increase as water temperature became higher. Thus,
the temperature of water cannot increase infinitely,

but only up to some equilibrium value. Here we con-
sider only such channels with equilibrium temperature
conditions, when the water temperature is constant
along the channel.

Strictly speaking, the temperature of the ice
melting point depends on pressure. The pressure
change involves a temperature change as well, to
bring the water to the pressure melting point. Of
course, it happens only in pressure {(completely filled)
channels. According to Rothlisberger (1972), about 1/
3 of the energy is spent for such water temperature
adjusting in a horizontal pressure conduit. For downs-
loping channels, this part of energy would be less and
we do not consider this phenomenon here.

Finally, we do not take into account ice warming
because only temperate glaciers are under considera-
tion.

On the basis of the abovementioned argumenta-
tion we can conclude that the change in the potential
energy AE, is immediately spent for ice melting 4E:

.{IEp'—“dEi, (1)

Such approach is not original and was considered by
other researchers too (Rothlisberger, 1972; Cutler,
1998), but we should emphasize that it is applicable
only for a channel as a whole or significant part of it
rather than for small parts of a channel, because, as
we mentioned above, we cannot neglect the changing
of the kinetic energy in short conduits.

Of course, such approach, when only the potential
energy of water is taken into account, cannot be
universally applicable. We need to say that it is not
correct to apply this model for cases of high influence
of warm weather conditions (warm air, solar radia-
tion or precipitation), relatively high rates of ice
deformation (small streams deep in the ice), presence
of deposits in channels etc. Therefore, we do mot
consider these situations in this work.

Such simplified conditions are not rare in nature.
If a surface channel is even slightly deepened into the
ice, the influence of solar radiation and air tempera-
ture may become negligible. If a channel is deep in the
ice but the water flow discharge is sufficiently high
(especially during a glacial lake outburst), the ice
creep may be negligible and so on.

3. lIce melting rate in open channels

Open channels can exist both on the surface and
inside a glacier. In the latter case, we are in the
situation that the solar radiation is absent and the
influence of air temperature is negligible. Let’s con-
sider a straight channel with the same cross-section
along it (Fig. 1) and let’s take some water volume V'
with thickness Adx and the ice-contact surface area
Sweu- We especially consider a channel with an arbi-
trary cross-section and water level to show universal
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Fig. 1. The sketch of a straight inclined channel for under-
standing of the terms of the basic equations (2-4).

applicability of the argumentations. The water flow v

could be under pressure too, but such case we consider
in the next chapter. The energy needed for melting of
the ice with mass 4m equals

AEi:qu:qpiSwallAT, (2)

where ¢ is the ice melting latent heat, p; is the ice
density and A4y is the thickness of melted ice on the
channel walls. If this volume of water had moved
down through the distance v4t, , where v is the water
flow velocity, its potential energy would be changed
by the value

AEp=0,V-g-v-At-sin a, (3)

where o, is the water density, g is the acceleration
due to gravity, « is the channel slope. From simple
geometrical considerations, the next relations are
obvious:

Swall=Pwet'dX, » (43)

V= Sf!ow . Ax, (4b)

where P, is the wetted perimeter (the bold line on
the face cross-section in Fig. 1), Ssew is the area of
water flow cross-section {the hatching on the vertical
surface). Combining the equations (1-4) and consider-
ing that the relation between the water flow cross
-section area Sy, and the wetted perimeter P iS
the hydraulic radius R (by definition), we find out the
next equation for the ice melting rate:

%=%%?—- v-sin a. ®)
For round or half round conduits, the hydraulic radius
equals to 1/4 of its diameter. The water flow velocity
for steady-state conditions can be calculated by the
well-known Shezi equation (Brebbia and Ferrante,
1983; Kiselev, 1972):

v=CJR-1, (6)

where 7 is hydraulic slope, which equals to sin ¢ for
open channels; coefficient C is defined by Manning
equation:

1

=R, @)

C=,Z

The friction coefficient » for clear ice is regarded to
be approximately 0.02 (Rothlisberger, 1972). But for
most of the real channels the value C=40 can be
considered as constant, because for the hydraulic
radius in the limits 0.025-2.5 m (that corresponds to a
round tube with the diameter 0.1-10 m) the constant C
varies in much less range: 27-58. Thus, a new equation
for ice melting rate would be as follows:

ﬂz&iC(R sin @)™, (8)

dt 2 g

If we compare the ice-melting rate calculated by
the equation (8) with some field data, we will find out
that the equation (8) gives too high values. It is not
surprising, because the real channels are not straight
usually. Meandering of a channel means that for the
same height difference the channel is longer by, say, %
times, and we need to write (1/%) sin ¢ instead of sin g.
For some glacial channels (in particular for surface
ones), the meandering coefficient %2 can be defined
directly. We can only suppose that channels inside
glaciers have similar meandering coefficient.

According to Marston (1983), the meandering
coefficient (sinuosity), measured on some glaciers of
Alaska, was turned out to be equal to about 1.05-1.25.
In Garver ef al. (1994) the supraglacial channel with
sinuosity 1.43 was called as gently sinuous. Our own
observations of surface streams on Fisht Glacier,
West Caucasus, gave the value about 1.5 and even 2 in
some parts of the streams. So we will consider below
that the channel has sinuosity 1.5, but have in mind
that as applying the equations to some real glacial
conduits, one should use its own value of meandering
coefficient.

Another reason of disagreement between the
measured and calculated values is the complicated
form of channel cross-sections. It is obvious that the
heat flux between ice and water depends on the ratio
between the water volume and the area of the channel
walls through which the heat exchange occurs. From
a two-dimensional point of view, the heat flux
depends on the ratio between the area of water flow
cross-section and the wetted perimeter, i.e. the
hydraulic radius. A round conduit is known to have
the maximum value of the hydraulic radius. There-
fore, if the cross-section of a channel was not round,
the hydraulic radius would be smaller and, according
to the equation (8), the ice-melting rate would
decrease.

In summer of 1998, we observed small surface
streams on Fisht Glacier, West Caucasus. The width
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of such channels was found to be about four times
larger than its depth:

D/ h=4,

Probably, for others channels or some specific condi-
tions this relation can be different. If we approximat-
ed such form of the conduit cross-section as an ellipse,
the hydraulic radius would be as below:

R: Seilipse ~ D (9}

Pe!lipse 6"
The observations also show that even under sufficient
diurnal oscillations of water discharge, the streams on
the surface of the glacier tend to lower without chang-
ing its form rather than widen (Marston, 1983), ie.
both the width D and depth % remains constant. It
means that for open channels the rate of ice melting is
nothing else but the rate of the channel lowering.
Now we can write down the final equations for
the ice-melting rate both for round and elliptical
conduits with meandering: :

dr _pw g~ D . )3,2
VAR C(—-s4k ine) , (10a)
dr _ow & (D . )3’2
VAR C spsina) . (10b)

The curves of the equation (10b) for different values of
the channel slope ¢ and the channel width D are
shown in Fig. 2. We can see that the ice-melting rate
in glacial streams is in the limits of 10-20 cm day™*
except very large or steep conduits.

Let’s compare some field data with ones present-
ed in Fig. 2. According to Marston (1983), the channel
deepening rate for some glaciers in Alaska was in the
range 4-8 cm day™! that corresponds to rather realis-
tic channel parameters: for example, the channel

50 1

Melting rate, cm/day
8 8 &

—
<

width 0.5 m, the slope 5-10".

In 1998, at Fisht Glacier, West Caucasus, we took
some measurements of deepening rate of surface
streams (the ice melting rate at the bottom of them).
The slope of the glacier was about 10-15°. The channel
widths were from 10 cm for the smallest streams and
up to 0.5 m for the biggest ones. This rate was found
to be approximately equal to 4-7 cm day™' at the
daytime, but the water flow discharge and consequent-
ly the ice melting were much smaller at night. There
were several measurement points in two channels of
40 and 20 cm width. These channels were deep suffi-
ciently to exclude the influence of solar radiation.
Four days averaging results in the ice melting rate 3.5,
4.3 (wide channel) and 2.2 (narrow channel} cm day ™!
respectively. Because of the water level oscillations,
the hydraulic radius varied from approximately zero
to D/6 (see equation 10b). Therefore, the averaged
value of the hydraulic radius was thought to be R~
D/12. The curve of the equation (10b) for the above-
mentioned conditions with the hydraulic radius correc-
tion and the measured values of the channels deepen-
ing are shown in Fig. 3. Although there are no many
field data, we can see that our approach gives rather
tolerable results.
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Channel width D, m

Fig. 3. The ice melting rates on the channel walls of the
surface streams at Fisht Glacier in comparison with
calculated values. The slope: 12°, the channel width: 40
and 20 cm, the ice melting rate: 3.5, 4.3 (white marks)
and 2.2 (black mark) cm day~! respectively {four days
averaging).

4. Simplified model for glacial lake outburst

Lakes in glacial regions can commonly be formed
near a glacier, on the surface of a glacier, or even
inside of it, and may be dammed by moraines or ice.
Whether a glacial lake is a stable system or not,
depends on the lake water storage, the slope of the

! > 5 4
Channel width D, m

Fig. 2. Dependence of deepening rate for some open chan-
nel upon the channel width D for different value of a.
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glacier, the type of the dam and so on (Raymond and

Nolan, 2000). If by some reason a glacial lake system
became unstable, the lake outburst could occur. The
way, by which the water drains through the dam, is
obviously different for ice and other material
{moraine, earth dam, etc). Here we consider only ice
~dammed lakes, where outbursts occur due to the ice
melting. In addition to that, we consider only the
situation, when the drainage conduit is completely
inside the glacier (Fig. 4). Such situation, for example,
takes place for the well-known huge Mertzbacher
Lake on Inylichek Glacier, Tien-Shan (Mavlyudov,
1996).

At first, we should notice that in case of ice
~dammed lake draining, it should be one trunk chan-
nel instead of an arborescent system. Secondly, we
propose that the channel is under pressure along all its
length, ie. probably like in the drainage channel of
Mertzbacher Lake. Because pressure conduits tend to
be round in its cross-section (Isenko, 2000), we can
apply equation 10a to our model, but of course such an
approach turns out to be only a rude approximation.

One should remember that the potential energy of
water in pressure conduits is not only the gravita-
tional potential energy, as we considered before, but
the sum of it and the energy of the water pressure.
That is why we have to write down the hydraulic
slope 7 instead of the geometrical sin ¢ slope (see for
example Shreve (1972), Kiselev (1972)):

1 4p (1n

=sma+ P Tx

where Adp/dx is the pressure gradient inside the con-
duit. ’

So let’s consider a water reservoir and a conduit
started from the wall of the reservoir at some depth %4,
from the water surface. As passing from the lake to
the conduit, the water increases its velocity from

Water surface b

W

approximately zero to some value p. It means that the
water pressure drops sharply near the conduit
entrance. Therefore, water pressure along the dashed
line in Fig. 4 at first increases proportionally to the
depth of the lake, then drops sharply near the conduit
entrance, and further, inside the conduit, water pres-
sure decreases linearly to zero (strictly speaking, to
air pressure). The pressure jump near the conduit-
entrance can be defined by Bernoulli equation:

%i+7>2w—: const. (12)
As was mentioned above, along the streamline near’
the conduit entrance, the water velocity increases
approximately from zero to ». Therefore, according
to {12), the water pressure decreases by the value Jp
=po0?/2 and the water pressure at the upper
{entrance) point of the conduit becomes as below:

2
o= pwgho—%”—-. 13

In terms of the model in Fig. 4, equation (11) would be
as follows:
a2
i=tiy Bo=vilg (14)

Combining this equation with Shezi formula (6) and
extracting the hydraulic slope 7 from it, we find:

;= 22(h+ ho) @s)
281+ C°R-
Finally, combining equation (15) with (10a), we obtain
a new equation for ice-melting rate in round pressure
conduits in terms of the glacial lake drainage model:

32
i oe g | FETM)

. 2
dt  p: qC gggz +1

(16)

Fig. 4. Schematic diagram of a water reservoir with a drainage channel. 4, the
depth of the reservoir, %: the height difference between ends of the channel, /, D
and ¢ the length, the diameter and the slope of the channel, respectively, A
possible water stream-line is shown by the dashed line.
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The curves of equation (16) are shown in Fig. 5 for
different parameters. We can see (curves 2 and 4) that
the channel growth behavior is almost the same as the
deepening of open channels (Fig. 2). It is because for
most of glacial channels the value

a5, 17)
and the growth rate is proportional to the 3/2 power
of the diameter, like for open channels. Only when the
ratio between the channel length and its diameter
became sufficiently small (/< ~50D), then another
type of behavior is appeared. The curve 3 in Fig. 5 is
especially drawn for such conditions to show this

effect. The line 1 is for some transient conditions (/~ -

500). The curve 4 corresponds to the growth rate for
the conduit, which drains ice-dammed Mertzbacher
Lake. We should say that from mathematical point of
view, if we enlarge the range of the chart area, then
each curve in Fig. 5 would show such behavior as the
curve 3. For example, the curve 1 would be like the
curve 3 when the channel diameter reached 10-15
meters, but such values are seemed to be nonrealistic.

A3
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1
1

<@
r
t

Melting rate, cm/day
B s

—
<
r

Channel diameter D, m

Fig. 5. Dependence of the channel growth rate upon its
diameter for the ice-dammed lake model with some
values of the channel length [/ and the altitude differ-
ence i + hy between the lake surface and the water
outlet. L: 2+ ho = 10m, / = 500 m; 2: & + % = 30 m,
I =500m; 3.+ ho=5m, ] =50m;4: s + h = 400
m, { = 14000 m. See explanations in the text.

To find out the dynamics of the channel growth,
we have to solve the differential equation (16) for the
value D. Here we should remember that dD/di=
2dr/dt and notice that unlike the channel width D
from the previous chapter, where D is constant, the
channel diameter D for the pressure conduit is vari-
able.

Because equation (16) has no analytical solution,
we will solve the simplified equation using the condi-
tion (17). It gives us the following function:

D)=y, (18)

where [, is the initial conduit diameter (at the
moment ¢=0) and ¢ is a constant as:

34
asz%c[%‘?@] ’ (19)

Figure 6 shows the channel growth rate for the
parameters of Mertzbacher Lake according to equa-
tion (18). We can see that the channel diameter grows
very slowly at the initial stage, but then its size
becomes grow very fast and it reaches sufficient
values during only several days. Of course, it will
continue only until the lake is depleted. This can
explain the flood regime of a glacial-dammed lake
outburst when the long period of low water discharge
is followed by relatively short period of lake drain.
Mertzbacher Lake, for example, drains completely
once a year during approximately 8 days after the
beginning of outburst.

—
<
i
—

oo
1

Channel diameter D, m
[

0o 5 10 15 20 25 30 35
Time ¢, days

Fig. 6. The increase of the channel diameter with time,
calculated by of the equation {18). The parameters are
the same as of the channel, which drains out ice~-dam-
med lake Mertzbacher on Inyltchek Glacier.

We should say that this model correctly describes
only the final stage of a glacial lake drain, after the
outburst begins. At the time before it, the water flow
discharge is not high and consequently the situations,
when the ice creep is not negligible, the conduit cross
-section is not round or the water flow is not pressure
along the conduit, probably take the place. Therefore,
this model cannot predict, for example, the time
between outbursts or strict value of outflow hydro-
graph during usual period of drain (unlike outburst
regime). On the contrary, the behavior (not strict
value) of the flow hydrograph is seemed to be well
described by the aforementioned technique. If by some
reason the channel growth became higher its closure
rate due to the ice creep (for example, because of
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increasing of the water flow discharge at the begin-
ning of an ablation period), the conduit starts to grow,
may be, very slowly at first. As the conduit is enlarg-
ing, the water flow discharge becomes higher and
more and more parts of the conduit become complete-
ly filled with water (pressure), creating conditions
appropriate for our model.

5. Conclusions

1. Consideration of only the change in the potential
energy of a water flow for defining ice-melting rate
on the channel walls gave rather realistic results. It
means that for the most common glacial channels the
potential energy is the most significant part in the
energy balance inside a water flow and that such
approach can be applicable to many of natural glacial
streams.

2. Usually, the ice-melting rate in glacial streams is in
the limits of 10-20 cm day ™' except very large or steep
conduits.

3. Both the intensity of the deepening of the channels
partially filled with water and the expansion of the
completely filled channels are proved to be propor-
tional to the 3/2 power of the conduit size, i.e. calcu-
lated by similar formulas.

4. We need to take into account conduits meandering
and their cross-section nonroundness, otherwise it
causes to overestimating of the ice-melting rate in
several times.

5. On the basis of the abovementioned backgrounds, a
model of a glacial ice-dammed lake was presented.
The main result of this modeling is peak-like hydro-
graph of the outflow from the lake, when the long
period of low water discharge is followed by relatively
short period (several days or weeks) of lake drain.
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