1	Numerical snowpack model simulation schemes for avalanche prediction in Japan
2	
3	Hiroyuki HIRASHIMA ¹
4	
5	1. Snow and Ice Research Center, National Research Institute for Earth Science and Disaster
6	Resilience, Nagaoka, 940-0821, Japan
7	
8	
9	(Received November 24, 2017; Revised manuscript accepted January 25, 2019)
10	
11	Abstract
12	
13	This paper presents simulation schemes, developed by National Research Institute for Earth
14	Science and Disaster Resilience (NIED), for stability indices and liquid water infiltration that
15	may be applied to a range of numerical snowpack models for avalanche prediction. The
16	schemes were originally developed in the SNOWPACK model, and are introduced for wider
17	application using flow charts, equations, and parameter tables for simulation of the natural

18	stability index, shear strength, and water content. Validation of the stability indices was
19	performed through simulations of eight recent surface avalanche accidents. Even though the
20	simulations did not explicitly consider the weak layer formed by brittle precipitation particles
21	that triggered most of the recent avalanches, they show that avalanche risks are high when
22	stability indices are below a threshold of 2. This result supports previous work and
23	demonstrates the wider applicability of the schemes for providing information on snowpack
24	stability. However, estimation of avalanche risk could be improved through incorporation of
25	information on snow crystal type and associated metamorphism parameterization in numerical
26	snowpack models.
27	
28	Keywords: numerical snowpack model, avalanche prediction, liquid water movement, shear
29	strength
30	
31	1 Introduction
32	
33	Avalanche forecasting using the numerical snowpack model SNOWPACK is performed as
34	part of the snow disaster forecasting project of the Snow and Ice Research Center (SIRC),

35	National Research Institute for Earth Science and Disaster Resilience (NIED), Japan (Nakai et
36	al., 2012). The SNOWPACK model was initially developed by Bartelt and Lehning (2002)
37	and Lehning et al. (2002a, b) for avalanche forecasting in Switzerland and was first applied in
38	Japan by Hirashima et al. (2004) and Yamaguchi et al. (2004). Since then, the model has been
39	adapted and improved to enhance the accuracy of avalanche detection in Japan. The main
40	improvements to the model involve the use of a new parameter for shear strength estimation,
41	the dry snow metamorphism factor (Hirashima et al., 2009, 2011), and the incorporation of
42	water transport processes through layered snow (Hirashima et al., 2010). Validation of the
43	SNOWPACK model using snow pit observation data for snow temperature, density, water
44	content, and grain size is reported in Hirashima et al. (2015), and the improvements are
45	reviewed in Hirashima (2014).
46	The SNOWPACK model is applied to estimate avalanche risk using the stability index. A
47	stability index of 1.5 or below is usually taken as the threshold for avalanche risk
48	(Sommerfeld, 1984). However, in applications of the SNOWPACK model to specific
49	avalanches in Japan (Nishimura et al., 2005; Sato et al., 2007; Hirashima et al., 2006, 2008;
50	Takeuchi et al., 2011; Takeuchi and Hirashima 2013; Abe and Hirashima 2015), many

51 avalanches occurred when the simulated stability index was 2 or below. Therefore, Hirashima

et al. (2006, 2008) suggested that a stability index threshold of 2 was more appropriate for
evaluating avalanche susceptibility in Japan.

54	This paper presents prediction schemes that allow the stability index algorithms to be
55	implemented in other numerical snowpack models in Japan (e.g., Niwano et al., 2012).
56	Although many descriptions of the SNOWPACK parameterized in Japan are noted in the
57	review of Hirashima (2014), they focused on successful improvements of SNOWPACK in
58	Japan. In contrast, this paper focuses on procedures for applying the simulation to other
59	numerical snowpack models, including how to obtain input data from meteorological
60	observations (Hirashima et al., 2008), and from equations and flow charts for the calculation
61	of shear strength, and liquid water movement. Simulated stability indices for recent
62	avalanches are also discussed in the context of model validation.

63

64 2 Procedure for snowpack simulation and avalanche prediction

65

66 2.1 Preparation of input data for snowpack simulation

67

68 The SNOWPACK model is the main core of the avalanche prediction system, a component

of the Snow Disaster Forecasting System (Nakai et al., 2012). Input data for SNOWPACK are
derived from meteorological observation data, mainly obtained from the SIRC and the
Japanese Meteorological Agency (JMA). The JMA has 1311 Automated Meteorological Data
Acquisition System (AMeDAS) stations and 60 local meteorological observatory stations.
Meteorological data observed with AMeDAS include air temperature, wind speed, wind
direction, sunshine duration, precipitation, and snow depth. The SNOWPACK model requires
inputs of air temperature, relative humidity, wind speed, wind direction, solar radiation,
longwave radiation, precipitation, and snow depth. Additional information, such as height of
instruments, are written in the initial setup file, which has a file extension of '.ini'. The height
of instruments affects bulk coefficients to calculate sensible and latent heat fluxes. Although
some of the input data may be directly taken from observations, some parameters must be

70

71

72Acquisition Syster MeDAS) stations and 60 local meteorological observatory stations.

73Meteorological d bserved with AMeDAS include air temperature, wind speed, wind 74direction, sunshine tion, precipitation, and snow depth. The SNOWPACK model requires 75inputs of air tem ure, relative humidity, wind speed, wind direction, solar radiation, 76 longwave radiation cipitation, and snow depth. Additional information, such as height of 77in the initial setup file, which has a file extension of '.ini'. The height instruments, are w 78of instruments aff ulk coefficients to calculate sensible and latent heat fluxes. Although 79 some of the input may be directly taken from observations, some parameters must be 80 estimated indirectly. If snow depth data are available at a JMA meteorological station close to 81 the simulated location, snowfall amount is estimated from snow depth. However, owing to 82 high spatial variation in snow depth with elevation and orientation, precipitation is usually 83 used to derive snow depth at the avalanche slope. Input air temperature is corrected using an elevational lapse rate of 0.0065 °C m⁻¹. 84

85 The AMeDAS data does not include solar and downward longwave radiations, which

86	significantly influence snowmelt amount and snow temperature, and are required inputs to the
87	model; these must be estimated from other meteorological parameters. First, the solar
88	radiation for ground with zero tilt is estimated based on the equations of Kondo et al. (1991),
89	as reported in Kondo (1994) using sunshine duration, air temperature, longitude, latitude, date
90	and time. This estimation neglects the effect of surrounding terrain such as shadow, reflection
91	of back scattering, and downward longwave radiation received from the snow or ground
92	surface. First, the whole solar radiation is calculated by the equation of Kondo et al. (1991)
93	and then it is classified into direct solar radiation and diffuse solar radiation. The ratio of
94	direct solar radiation to whole solar radiation is assumed to be equal to the ratio of sunshine
95	duration to possible sunshine duration. The diffuse solar radiation is derived form the
96	difference between whole solar radiation and direct solar radiation. Direct solar radiation is
97	corrected using slope angle, slope direction, solar angle, and solar direction. Downward
98	longwave radiation is also estimated based on the equation of Kondo et al. (1991). If
99	meteorological data provided by other agencies (e.g., Ministry of Land, Infrastructure,
100	Transport and Tourism, or local government) are available for sites closer to the avalanche
101	slope, that data is substituted. The meteorological data collected by other agencies usually
102	includes air temperature, precipitation, or snow depth.

103	The Japan Meteorological Agency Non-Hydrostatic Model (JMANHM; Saito et al., 2006),
104	which has a resolution of 1.5 km operated by NIED, is used to provide 30-hour-long
105	meteorological forecast data beginning at 09 and 21 UTC daily. The JMANHM outputs for 0-
106	20 m elevation provide all of the meteorological parameters necessary for input into the
107	SNOWPACK model.
108	To perform real-time simulations for several avalanche slopes, a prediction table is prepared
109	in advance (Table 1). Observed and forecasted meteorological data are connected to make the
110	input data. Simulation is updated for every three hours replacing forecasted data with latest
111	observed data (Fig. 1). The duration of each simulation is from the beginning of winter
112	(usually December 1 in Honshu island) to the last time of forecasted meteorological data. The
113	SNOWPACK simulation is completed within 20 min for the whole winter at one location in
114	single core simulations. We presently use Mac Pro 2012 computer with 2.4GHz, 12 core and
115	24 thread in Xeon CPU. Therefore, simulations for 24 slopes can be performed
116	simultaneously every 20 minutes. Simulations for whole avalanche slopes (about 100) are
117	completed in 2 hours. Simulated results were provided to registered users experimentally such
118	as local governments and road administrators (Nakai et al., 2012). Prediction simulations

119 were performed and updated every 3 hours for the winter of 2016–2017.

Table1

1212.2 Interpretation of simulations results

122

123 Although the skier stability index is used to estimate avalanche risk in Switzerland (e.g., 124Scheweizer et al., 2006; Shirmer et al., 2009), the natural stability index is used for natural 125avalanche prediction in Japan. The skier stability index includes the effect of the difference 126 between snow layers for hardness and grain sizes. If the difference of hardness or grain size is 127large, the skier stability index is corrected to be small. The natural stability index is calculated 128as the ratio of shear strength to shear stress, as described in section 3. Although avalanche risk 129is basically estimated using stability index, the cause of instability is estimated by other 130 information. Therefore, following information had better be considered for final decision. 131 Information on grain type is used to estimate the cause of weak layer formation (e.g., timing 132of faceted crystals formation). Furthermore, information on the water content and discharge 133 amount are required to estimate the wet snow avalanche risk. These data are included for the 134 operation of avalanche prediction. 135Figure 2 shows examples of snowpack conditions with low stability. Figure 2a is the case for

unstable conditions due to heavy snowfall. Fresh snow consolidates quickly after snowfall 136

137	and usually strengthens enough to support newly fallen snow. However, if heavy snowfall
138	continued for several hours, the snow is strongly loaded with newer snow before densification.
139	In this case, snow becomes unstable even if there is no weak layer (Endo, 1992). After
140	snowfall stops, the stability index increases rapidly. In another case (Fig. 2b), the red line at
141	about 200 cm above the ground surface indicates a weak layer (e.g., faceted crystals). This
142	unstable condition continues for two days after cessation of snowfall. The main control
143	schemes used to determine the stability index in SNOWPACK are the initial density of snow
144	(Hirashima et al., 2015), compressive viscosity (Lehning et al., 2002a), and the relationship
145	of snow density and shear strength (Lehning et al., 2004; Hirashima et al., 2009, 2011). Note
146	that these references are just referred written with model description. Concepts and theory
147	were written in other previous papers.
148	In the present SNOWPACK model, it is difficult to estimate the wet snow full depth
149	avalanche risk from the natural stability index (Hirashima et al., 2006), and information on
150	liquid water infiltration is used as an alternative method. When the SNOWPACK model used
151	a bucket scheme for liquid water infiltration, the discharge amount was used as the risk index
152	for a wet snow full depth avalanche (Hirashima et al., 2006). The most recent version of the
153	SNOWPACK model (from 2010) uses the Darcy-Buckingham law to simulate liquid water

154	infiltration (Hirashima et al. 2010; Wever et al., 2014). Using these schemes, a parameter
155	calculated from volumetric liquid water content provides an estimate of wet snow avalanche
156	risk. Figure 2c shows an increase in water content during water percolation, which leads to
157	increased wet snow avalanche risk. Mitterer et al. (2013) have also developed a quantitative
158	index to estimate wet snow avalanche risk in Switzerland. Schemes for liquid water
159	infiltration are further described in section 4.
160	
161	3 Natural stability index estimation using a dry snow metamorphism factor
162	
163	The natural stability index is calculated from shear strength divided by shear stress, and
164	was originally implemented in SNOWPACK by Lehning et al. (2004). In the original,
165	equations parameterized by Jamieson and Johnston (2001), which measured at the weak layer,
166	were used to estimate shear strength. When they were applied to heavy snowfall area in Japan,
167	most of the snow was simulated as unstable (Hirashima et al., 2008). Therefore, in Japan, the
168	method used to estimate shear strength was modified, based on observation and laboratory
169	experiment results (Yamanoi and Endo, 2002; Abe et al., 2007), and on a new parameter, the
170	dry snow metamorphism (DSM) factor (Hirashima et al., 2009, 2011). Figure 3 shows the

scheme used to estimate the DSM factor, shear strength, and the natural stability index (SI);
the associated equations and parameters are explained in tables 2 and 3. The SI is calculated
using Eq. (1) at all model layers, and the minimum value of SI from the entire snowpack is
used as the SI for the snowpack. The shear strength used in Eq. (1) is calculated using Eq. (2),
(3), and (4).

176The DSM factor is one of the independent parameters and is used to estimate shear strength 177in Eq. (2). The initial value of the DSM factor for new snow is set to zero (Fig. 3), and it then fluctuates within the range 0 to 1. When the temperature gradient is greater than 5 $^{\circ}Cm^{-1}$, the 178179DSM factor increases as temperature gradient metamorphism with Eq. (5) to (10). The equations are described in detail in Hirashima et al. (2009). When the temperature gradient is 180 below 5 $^{\circ}$ Cm⁻¹, the DSM factor decreases as equi-temperature metamorphism with Eq. (11) 181 or (12). A detailed description of Eq. (11) is given in Hirashima et al. (2011), where the 182183 parameter was determined by linear regression based on laboratory experiments performed in the cold room at -5 °C and -10 °C. Following that work, Hirashima and Abe (2012) 184 extended the laboratory experiments to temperature conditions of -2 °C and -15 °C. The 185186 results showed a positive correlation between decreasing rate of DSM factor and snow temperature at snow temperatures of lower than -5 °C and a negative correlation at snow 187

188	temperatures higher than -5 °C (Fig. 4). Based on these findings, two different equations
189	(Eq. 11 and 12) are used depending on snow temperature. The calculated value of dC/dt is
190	used to add or subtract the DSM factor, C. If the value of C is outside the range 0 to 1, it is
191	corrected to 0 or 1. The new DSM factor that is calculated is used for estimation of shear
192	strength and the next time step simulation (Fig. 3).
193	
194	4 Simulation schemes for liquid water infiltration
195	
196	Liquid water infiltration is simulated by the Richards equation (Richards, 1931). Liquid
197	water fluctuation is calculated by conservation of mass (Eq. 13), and water flux is estimated
198	by the Darcy-Buckingham law (Eq. 14). In the snowpack, the time scale of water transport is
199	small compared with consolidation, heat transfer, and metamorphism. In the old version of
200	SNOWPACK (i.e., that using a bucket scheme), the time step was usually 15 min. When the
201	same time step was used for the water transport scheme with Eq. (13) and (14), the simulation
202	diverged. When an explicit scheme was used, the simulation diverged even if the time step
203	was as small as 0.01 s. Although the implicit scheme permits a larger time step to be used, the
204	residual water content and complicated processes in the SNOWPACK model make it difficult

205	to perform a stable simulation. Hirashima et al. (2010) developed a technique to perform a
206	stable simulation with relatively large time steps using explicit schemes. In the present
207	SNOWPACK model, Wever et al. (2014) successfully stabilized the simulation by
208	implementing Richard's equation with an implicit scheme and pragmatic strategy. The
209	advantage of the technique of Hirashima et al. (2010) is that it is relatively easy to perform a
210	stable simulation for more complex situation such as three-dimensional water transport
211	(Hirashima et al., 2014). Thus, this study adopted the technique of Hirashima et al. (2010).
212	The flowchart for the liquid water infiltration scheme is shown in Figure 5. Equations and
213	parameters are defined in tables 2 and 3, respectively. When liquid water is supplied by rain
214	or snowmelt, the liquid water content of the topmost model layer is increased following Eq.
215	(15). Solar radiation-induced snowmelt amount at an internal layer percolated into the
216	snowpack is also calculated using same equation. To calculate water movement, suction was
217	estimated using the van Genuchten model (van Genuchten, 1980) with Eq. (16) and (17).
218	Parameters for saturated and residual water content were determined based on the results of
219	Yamaguchi et al. (2010) and are shown in Table 3. Parameters for the van Genuchten model
220	were determined using Eq. (18) and (19). Hydraulic conductivity for all elements was
221	calculated using Eq. (20), (21), and (22).

222	Usually, the water transport amount is calculated by multiplying water flux by the time step.
223	However, as discussed, the time step must be very small if the explicit scheme is used. In the
224	technique of Hirashima et al. (2010), the water transport amount for one time step is
225	calculated using Eq. (23). Here, the water transport amount was calculated as a function of
226	initial water flux and limitation to water transport amount, q_{lim} , to avoid divergence. The
227	initial water flux was calculated using the Darcy-Buckingham law, Eq. (14). The parameter
228	q_{lim} represents the water transport amount needed for equilibrium conditions between two
229	elements and was calculated using Eq. (24). Using these equations, water transport
230	simulations could be performed with a time step of 20 s. The detailed derivation of the
231	equations is given in Hirashima et al. (2010).
232	A problem of this scheme is that there is too much ponding at the capillary barrier owing to
233	the neglect of preferential flow. To avoid this problem, an upper limit of water content at the
234	capillary barrier was set to 7%. If volumetric water content at the capillary barrier exceeds 7%,
235	the extra water is forced to move to a lower element. The value of 7% was determined using a
236	sensitivity experiment to estimate the optimal value to match observed snow discharge
237	lysimeter data at the field site at SIRC, Nagaoka.

239 5. Estimation of the stability index for recent slab avalanches

240

241	SNOWPACK simulation results and avalanche release data have been compared in a number
242	of previous studies (Hirashima et al., 2006, 2007, 2008; Sato et al., 2007; Takeuchi and
243	Hirashima, 2013; Abe and Hirashima, 2015). Most recently, Abe and Hirashima (2015)
244	estimated stability indices for slab avalanches induced by faceted crystal layer collapse and
245	showed that the SNOWPACK model could successfully reproduce destabilization. Since that
246	work, SIRC has surveyed 11 avalanches, 8 of which were surface avalanches (as listed in
247	Table 4). The survey results are described in detail on the SIRC website
248	(http://www.bosai.go.jp/seppyo/kenkyu_naiyou/seppyousaigai/seppyousaigai.htm).
249	Most of the surveyed avalanches were not triggered by collapse of a faceted crystal layer, but
250	through collapse of brittle precipitation particles.
251	The SNOWPACK model cannot reproduce the effect of precipitation particle type because it
252	is not included as input data. Nevertheless, we attempted to estimate stability indices for such
253	avalanches to validate the model simulations for this type of avalanche. Simulations were
254	performed using the method shown in section 2, with meteorological observations obtained
255	from the nearest AMeDAS station used for input data.

Table4

256	Temporal changes in the simulated SI for surface avalanche profiles are shown in Figure 6,	Fig.6
257	and the SI value at the time of avalanche release is given in Table 4. In these simulations,	
258	seven of the eight avalanches have a SI at release of 2 or below, and five are below 1.5 (see	
259	Table 4). In the case of Hachimantai, in which the simulated stability index was 2.4 (Fig. 6e),	
260	the avalanche was earthquake induced and may not have been released without the earthquake	
261	trigger. Therefore, the model could estimate avalanche risk using a threshold value of 2.	
262	However, as mentioned above, six of the eight avalanches were due to collapse of a weak	
263	layer formed by brittle precipitation particles. As the SNOWPACK model does not use	
264	information on the crystal type of precipitation particles, the destabilization mechanism was	
265	incorrect. Nevertheless, the simulated SI did manage to reproduce unstable conditions. Most	
266	of the simulation results showed that the layer representing the surface prior to snowfall	
267	became a weak layer (see Figs. 6 a-d, f, and h). Before snowfall, the snow surface layer	
268	would have been exposed to cold air and radiative cooling, which leads to temperature	
269	gradient metamorphism and the creation of faceted crystals. When faceted crystals are buried	
270	by subsequent snowfall, they form a weak layer. However, in many cases, survey results	
271	showed the weak layer comprised non-rimed precipitation particles rather than faceted	
272	crystals. Non-rimed snow crystals are associated with the south-coast cyclone, and snow	

273	stability decreases during large amounts of snowfall under such conditions (Ishizaka et al.,
274	2015). If there is sustained fine weather before snowfall, a weak layer of faceted crystals may
275	also develop. In many of the avalanches, faceted crystals formed in the simulation.
276	Consequently, the timing of snow destabilization was detected regardless of the position of
277	the weak layer, even though the mechanism was incorrect. In these cases, days with zero
278	precipitation were continued for more than 3 days before the south-coast cyclone approached.
279	Furthermore, on one of these days, the sunshine duration was almost equal to possible
280	sunshine duration, indicating that it was sunny day. Radiation cooling on sunny days led to
281	the formation of faceted crystals at the surface in the simulation. The analysis of more cases is
282	necessary to determine whether this trend is typical before the approach of a south-coast
283	cyclone or not. If this trend is typical, this type of avalanche can be predicted indirectly by
284	SNOWPACK. Nevertheless, for accurate avalanche prediction, the SNOWPACK model needs
285	to be modified to consider precipitation particle type, with appropriate input data. The
286	validation work also suggests that the model overestimates the formation of faceted crystals.
287	Improvement of these elements would allow more accurate estimation of stability indices,
288	avoidance of false alerts, and determination of stabilization after snowfall cessation.

290 6. Summary

292 This paper describes simulation schemes for providing the stability index and liquid water 293 condition of a snowpack for avalanche prediction in Japan. These schemes are implemented 294in the SNOWPACK model, which uses an original parameter for shear strength (the DSM 295factor); this parameter is key to the improvement of avalanche risk prediction. This paper has 296 been written to enable application of the schemes to other numerical snowpack models. 297Equations, parameters, and flow charts are provided to aid understanding of the simulations. 298Estimated stability indices have been compared with avalanche observations from several 299previous studies. Here, stability indices were simulated for eight recent surface avalanches. 300 Despite most of the recent avalanches being induced by brittle precipitation particles, which 301 are not considered by the present version of SNOWPACK, the simulated stability indices did 302 reproduce unstable conditions. Although the existing model provides useful information for 303 estimating avalanche risk, it needs further improvement for accurate reproduction. 304 Implementation of information on the type of snow crystal comprising precipitation particles, 305 and parameterization of metamorphism depending on snow crystal type, will enable more 306 accurate estimation of avalanche risk.

308	Acknowledgments
-----	-----------------

310	This study is part of the National Research Institute for Earth Science and Disaster
311	Resilience (NIED) project, 'Research on Advanced Snow Information and its application to
312	Disaster Mitigation'. I am grateful to members of the Snow and Ice Research Center for their
313	advice and discussion. Most of schemes introduced in this paper are based on experiments
314	performed by O. Abe and S. Yamaguchi. We are grateful to M. Miura, who assisted with our
315	research.
316	
317	References
318	
319	Abe, O., Mochizuki, S., Hirashima, H. and Sato, A. (2007): Parameterization of shear strength
320	of Faceted Snow Layers (in Japanese). Cold Region Technology Conference, 23, 125-129.
321	Abe, O. and Hirashima, H. (2015): Evaluation of an avalanche forecasting system based on
322	the development process of faceted crystals (in Japanese with English abstract). J. Jpn. Soc.

323 Snow and Ice (Seppyo), **77**, 37-45.

- 324 Bartelt, P. and Lehning, M. (2002): A physical SNOWPACK model for the Swiss avalanche
- warning. Part I: numerical model. *Cold Reg. Sci. Technol.*, **35** (3), 123-145.
- 326 Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S. and
- 327 Charrier, P. (2012): 3-D image-based numerical computations of snow permeability: links to
- 328 specific surface area, density, and microstructural anisotropy. *The Cryosphere*, **6**, 939-951.
- 329 Endo, Y. (1992): Time variation of stability index in new snow on slopes. Proceedings of the
- 330 Japan-U.S. workshop on snow avalanche, land-slide, debris flow prediction and control,
- 331 1991, Tsukuba, sponsored by Science and Technology Agency of Japanese Government,
- 332 85-94.
- Hirashima, H., Nishimura, K., Baba E., Hachikubo, A. and Lehning, M. (2004):
- 334 SNOWPACK model simulations for snow in Hokkaido, Japan. Ann. Glaciol., **38**, 123-129.
- Hirashima, H., Nishimura, K., Yamaguchi, S., Sato, A. and Lehning, M. (2006): Evaluation
- 336 of snow stability index in a snow cover model for avalanche accidents (in Japanese). Cold
- 337 Region Technology Conference, 22, 26-30.
- Hirashima, H., kamiisi, I., sato, A., Matuura, T., Machida, T. and Lehning, M. (2007): Effect
- 339 of meteorological input data in the accuracy of avalanche prediction -validation on the Route
- 340 17- (in Japanese). *Cold Region Technology Conference*, **23**, 192-197.

- Hirashima, H., Nishimura, K., Yamaguchi, S., Sato, A. and Lehning, M. (2008): Avalanche
 forecasting in a heavy snowfall area using the snowpack model. *Cold Reg. Sci. Technol.*, 51
 (2–3), 191-203.
- Hirashima, H., Abe, O., Sato, A. and Lehning, M. (2009): An adjustment for kinetic growth
- 345 metamorphism to improve shear strength parameterization in the SNOWPACK model. Cold
- 346 *Reg. Sci. Technol.*, **59** (2–3), 169-177.
- 347 Hirashima, H., Yamaguchi, S., Sato, A. and Lehning, M. (2010): Numerical modeling of
- 348 liquid water movement through layered snow based on new measurements of the water
- 349 retention curve. *Cold Reg. Sci. Technol.*, **64**, 94-103.
- 350 Hirashima, H., Abe, O. and Sato, A. (2011): Parameterization of the shear strength of faceted
- 351 crystals during equi-temperature metamorphism. Ann. Glaciol., 52, 111-118.
- 352 Hirashima, H. and Abe, O. (2012): Snow temperature dependency of shear strength change
- 353 for faceted crystals during equi-temperature metamorphism (in Japanese). Seppyo
- 354 *hokushinetsu*, **32**, 15.
- Hirashima, H. (2014): Success and challenges of avalanche prediction using numerical
- snowpack model (in Japanese). J. Jpn. Soc. Snow and Ice (Seppyo), 76, 411-419.

- 357 Hirashima, H., Yamaguchi, S. and Katsushima, T. (2014): A multi-dimensional water
- 358 transport model to reproduce preferential flow in the snowpack, *Cold Reg. Sci. Technol.*, 108,
- 359 80-90. doi: 10.1016/j.coldregions.2014.09.004.
- 360 Hirashima, H., Yamaguchi, S., Kosugi, K., Nemoto, M., Aoki, T. and Matoba, S. (2015):
- 361 Validation of the SNOWPACK model using snow pit observation data (in Japanese with
- 362 English abstract). J. Jpn. Soc. Snow and Ice (Seppyo), 77, 5-16.
- 363 Ishizaka, M., Fujino, T., Motoyoshi, H., Nakai, S., Nakamura, K., Shiina, T. and Muramoto,
- 364 K. (2015): Characteristics of snowfalls and snow crystals caused by two extratropical
- 365 cyclones passing along the Pacific Ocean side of Japan on February 8 and 14-15 observed in
- 366 Niigata district, 2014 in relation to frequent occurrence of avalanches in Kanto-Koshin areas
- 367 (in Japanese with English abstract). J. Jpn. Soc. Snow and Ice (Seppyo), 77, 285-302.
- 368 Jamieson, B. and Johnston, C. D. (2001): Evaluation of the shear frame test for weak
- 369 snowpack layers. Ann. Glaciol., **32**, 59-69.
- 370 Kondo, J. (1994): Mizu Kankyo no Kishogaku (Meteorology of Water Environment),
- 371 Asakura-Shoten, 348pp.
- 372 Kondo, J., Nakamura, T. and Yamazaki, T. (1991): Estimation of the solar and downward
- atmospheric radiation (in Japanese). *Tenki*, **38**, 41-48.

- Lehning, M., Bartelt, P., Brown, B., Fierz, C. and Satyawali, P. (2002a): A physical
- 375 SNOWPACK model for the Swiss avalanche warning Part II. Snow microstructure. *Cold Reg.*
- 376 Sci. Technol., **35**, 147-167.
- 377 Lehning, M., Bartelt, P., Brown, B. and Fierz, C. (2002b): A physical SNOWPACK model
- 378 for the Swiss avalanche warning Part III: meteorological forcing, thin layer formation and
- 379 evaluation. Cold Reg. Sci. Technol., 35, 169-184.
- 380 Lehning, M., Fierz, C., Brown, B. and Jamieson, B. (2004): Modeling snow instability with
- the snow-cover model SNOWPACK. Ann. Glaciol., **38**, 331-338.
- 382 Mitterer, C., Techel, F., Fierz, C. and Schweizer, J. (2013): An operational supporting tool for
- 383 assessing wet-snow avalanche danger. Proceedings of International Snow Science Workshop
- 384 Grenoble, Francem 7-11 October 2013. ANENA, IRSTEA, Météo-France, Grenoble, France,
- 385 334-338.
- 386 Nakai, S., Sato, T., Sato, A., Hirashima, H., Nemoto, M., Motoyoshi, H., Iwamoto, K.,
- 387 Misumi, R., Kamiishi, I., Kobayashi, T., Kosugi, K., Yamaguchi, S., Abe, O. and Ishizaka, M.
- 388 (2012): A Snow Disaster Forecasting System (SDFS) constructed from field observations and
- 389 laboratory experiments. Cold Reg. Sci. Technol., 70, 53-61.

- 390 Nishimura, K., Baba, E., Hirashima, H. and Lehning, M. (2005): Application of the snow
- 391 cover model SNOWPACK to snow avalanche warning in Niseko, Japan. Cold Reg. Sci.
- 392 *Technol.*, **43**, 62-70.
- 393 Niwano, M., Aoki, T., Kuchiki, K., Hosaka, M. and Kodama, Y. (2012): Snow
- 394 Metamorphism and Albedo Process (SMAP) model for climate studies: Model validation
- using meteorological and snow impurity data measured at Sapporo, Japan. J. Geophys. Res.,
- 396 **117**, F03008, doi:10.1029/2011JF002239.
- 397 Richards, L. (1931): Capillary conduction of liquids through porous mediums, J. Appl. Phys.,
- **1**, 318-333, doi:10.1063/1.1745010.
- Roch, A. (1966). Les Variations de la résistance de la neige. *IAHS Publication*, **69**, 86-99.
- 400 Sato, T., Hirashima, H., Nemoto. M., Mochizuki, S., Abe, O., Lehning, M., Sato, A., Hanaoka,
- 401 M., Akiyama, K., Murakami, S. and Daimaru, H. (2007): Slab avalanches occurred at
- 402 Tsurunoyu in Nyuutou Onsen, Akita Prefecture, Japan (in Japanese with English Abstract). J.
- 403 Jpn. Soc. Snow and Ice (Seppyo), **69**, 445-456.
- 404 Saito, K., Fujita, T., Yamada, Y., Ishida, J., Kumagai, Y., Aranami, K., Ohmori, S., Nagasawa,
- 405 R., Kumagai, S., Muroi, C., Kato, T., Eito, H., and Yamazaki, Y. (2006): The operational
- 406 JMA nonhydrostatic mesoscale model. *Mon. Wea. Rev.*, **134**, 1266-1298.

- 407 Schweizer, J., Bellaire, S., Fierz, C., Lehning, M. and Pielmeier, C. (2006): Evaluating and
- 408 improving the stability predictions of the snow cover model SNOWPACK. Cold Reg. Sci.
- 409 *Technol.*, **46**(1), 52-59.
- 410 Schirmer, M., Lehning, M. and Schweizer, J. (2009): Statistical forecasting of regional
- 411 avalanche danger using simulated snow-cover data. J. Glaciol., 55, 761-768.
- 412 Sommerfeld, R.A. (1984): Instructions for using the 250 cm^2 shear frame to evaluate the
- 413 strength of a buried snow surface. U.S. For. Serv. Res. Note RM-446, 1-6.
- 414 Takeuchi, Y., Torita, H., Nishimura, K. and Hirashima, H. (2011): Study of a large-scale dry
- slab avalanche and the extent of damage to a cedar forest in the Makunosawa valley, Myoko,
- 416 Japan. Ann. Glaciol., **52**(58), 119-128.
- 417 Takeuchi, Y. and Hirashima, H. (2013): Snowpack estimations in the starting zone of
- 418 large-scale snow avalanches in the Makunosawa valley, Myoko, Japan. Ann. Glaciol., 54(62),
- 419 19-24.
- 420 van Genuchten, M. T. (1980): A closed-form equation for predicting the hydraulic
- 421 conductivity of unsaturated soils. *Soil Sci. Soc. Am. J.*, **44**(6), 892-898.

- 422 Wever, N., Fierz, C., Hirashima, H. and Lehning, M. (2014): Solving Richards Equation for
- 423 snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack
- 424 model. *The Cryosphere*, **8**, 257-274.
- 425 Yamaguchi, S., Sato, A. and Lehning, M. (2004): Application of the numerical snowpack
- 426 model (SNOWPACK) to the wet-snow region in Japan. Ann. Glaciol., **38**, 266-272.
- 427 Yamaguchi, S., Katsushima, T., Sato, A. and Kumakura, T. (2010): Water retention curve of
- 428 snow with different grain sizes. *Cold Reg. Sci. Technol.*, **64**(2), 87-93.
- 429 Yamaguchi, S., Watanabe, K., Katsushima, T., Sato, A. and Kumakura, T. (2012): Dependence
- 430 of the water retention curve of snow on snow characteristics. *Ann. Glaciol.*, **53**(61), 6-12.
- 431 Yamanoi, K. and Endo, Y. (2002): Dependence of shear strength of snow cover on density and
- 432 water content (in Japanese with English abstract). J. Jpn. Soc. Snow and Ice (Seppyo), 64,
- 433 443-451.

- 435
- 436

437	List of Tables
438	
439	Table 1 Example of an input data record for estimating avalanche risk for specific avalanche
440	slopes
441	
442	Table 2 Equations used in schemes to simulate the natural stability index (Eq. 1-12) and
443	liquid water infiltration (Eq. 13–24). See Table 3 for explanation of parameters
444	
445	Table 3 Parameters used in the equations shown in Table 2
446	
447	Table 4 Details of avalanches used for validation in this study. The letters a-h refer to the
448	stability index simulations shown in Figure 6
449	

450	Figure Captions
451	
452	Figure 1 Schedule to update snowpack information. Yellow: using observed data; green: using
453	predicted data. Meteorological prediction data is updated for every 12 hours.
454	
455	Figure 2 Examples of low stability snowpacks at risk of avalanche under; a: heavy snowfall,
456	b: snowfall with a weak layer, and c: wet snow with liquid water infiltration.
457	
458	Figure 3 Flow chart for simulation of the natural stability index using DSM factor to estimate
459	avalanche risk. See Table 3 for explanation of symbols.
460	
461	Figure 4 Rate of reduction of the dry snow metamorphism (DSM) factor during
462	equi-temperature metamorphism depending on snow temperature (Hirashima et al., 2011;
463	Hirashima and Abe, 2012).
464	
465	Figure 5 Flow chart for simulation of liquid water infiltration into the snowpack. See Table 3
466	for explanation of symbols.

show the timings of avalanche release. See Table 4 for details of the avalanches.

473	Table 1 Ex	ample of a	n input data	record for	estimatin	ng aval	lanche ri	sk fo	r specif	fic avala	nche
474	slopes										
475											
	Name	Latitude Latitude_min	Latitude_sec Longitude	Longitude_min Longit	utde_sec Altitude	Slope Angle	Slope Direction	JMA data	other data	Eng_Name	
						C) WNW	高田 (Takada)			
476											
477											

478 Table 2 Equations used in schemes to simulate the natural stability index (Eq. 1-12) and

479 liquid water infiltration (Eq. 13–24). See Table 3 for explanation of parameters

480

Equation Parameter

Reference

 $gh_d \sin \varphi \cos \varphi$

 $h = \frac{1}{a} \left(\theta^{-\frac{1}{m}} - 1 \right)^{\frac{1}{m}}$

Symbol	Parameter	Value	Unit
∆t	One time step		S
Δz_1	Thickness of element for upper layer		m
Δz_2	Thickness of element for lower layer		m
	Parameter for water retention curve		\mathbf{m}^{-1}
C	Dry snow metamorphism factor	0 to 1	-
1	Grain diameter		mm
D ₀	Water vapor diffusion coefficient at 0 $^{\circ}\!\mathrm{C}$ and 1 atm	2.23×10 ⁻⁵	m²s⁻¹
) _{air}	Water vapor diffusion coefficient in atmosphere	Eq. 8	m^2s^{-1}
) _{eff}	Empirical equation of diffusion coefficient in snowpack	Eq. 9	m ² s ⁻¹
D _{snow}	Water vapor diffusion coefficient in snow	Eq. 7	$m^2 s^{-1}$
3	Acceleration due to gravity	9.8	ms^{-2}
1(θ)	Suction at volumetric water content, θ	Eq. 16	m
1 _d	Vertical thickness of snow from target snow		m
ζ	Hydraulic conductivity	Eq. 22	ms ⁻¹
ζ _r	Relative hydraulic conductivity	Eq. 21	-
ζ _s	Saturated hydraulic conductivity	Eq. 20	ms ⁻¹
L	Latent heat of sublimation	2.838×10 ⁶	Jkg⁻¹
1	Parameter for water retention curve		-
ı∆t	Water transport amount in one time step	Eq. 23	m
-	Water flux in Darcy–Backingham law	Eq. 14	ms^{-1}
him	Water transport amount for equilibrium condition between two elements	Eq. 24	ms^{-1}
ک ہ	Gas constant for water vapor	461.9	$m^2s^{-2}K^{-1}$
5	Shear strength	Eq. 2	Pa
S _{DH}	Shear strength of depth hoar	Eq. 4	Pa
5I	Natural stability index	Eq. 1	-
S _{RG}	Shear strength of rounded grains	Eq. 3	kPa
	Time		S
ſ,	Triple point temperature	0.01	$^{\circ}$ C
Г,	Air temperature		\mathcal{C}
Г _s	Snow temperature		$^{\circ}$ C
Z	Snow height		m
ı	Coefficient reflecting a DSM factor increment	Eg. 6	m ² kg ⁻¹
Э	Volumetric water content	-	-
9	Effective water saturation	Eq. 17	_
Ð1	Volumetric water content for upper layer	-	_
),	Volumetric water content for lower layer		_
),	Residual water content	0.024	_
),	Saturated water content	0.9 × porositv	_
,	Kinematic viscosity coefficient of water at 0 $^{\circ}$ C	1.792×10 ⁻³	$m^2 s^{-1}$
,	Snow density		kem- ³
- Da	Triple point pressure	610.6	Ра
- v)	Saturated water vapor pressure	Ea. 10	Pa
· v			1

483 Table 3 Parameters used in the equations shown in Table 2

485 Table 4 Details of avalanches used for validation in this study. The letters a-h refer to the

486 stability index simulations shown in Figure 5

Figure	Place	Time	overview and damege	victim weak layer	Location	elevation (m)	slope direction	meteorological data	simulated SI
a	Sekiyama touge	2014/2/15 12:00	Two cars were involved, no injury.	0 brittle snow crystal type	38° 23' 72" N 140° 33' 59' E	850	w	Murayama	13
ь	Sekiyama-touge	2015/1/31 23:35	Cars were stranded	0 brittle snow crystal type	38° 23' 72" N 140° 33' 59' E	850	w	Murayama	1
C	Kannon-tera	2015/1/31 23:05	Cars were stranded	0 brittle snow crystal type	38° 25' 33" N 140° 31' 53" E	483	N	Murayama	1
d	Nishikawa cho	2015/2/11 19:35	A car was involved, no injury	0 brittle snow crystal type	38° 21' 49" N 139° 55' 2" E	730	WSW	Ouisawa	19
e	Hachim antai	2015/2/17 8:06	Induced by earthquake. No injuried	0 faceted crystals	39° 58' 34" N 140° 48' 8" E	1110	Е	Iwatem atsuo	2.4
f	Maehotaka	2016/1/31 11:45	A man was involved and died after rescued	1 brittle snow crystal type	36° 47' 25" N 139° 8' 46' E	1930	NE	Fujiwara	1
g	Togarionsen	2017/2/13 8:10	Three people were involved and one person was died	1 FF on melt forms	36° 55' 38" N 138° 23' 3" E	930	ESE	Nozawaonsen	2
h	Nasu	2017/3/27 8:30	More than 40 people were involved and eight people were died, 38 people were injuried.	8 brittle snow crystal type	31° 7' 6" N 139°59' 5" E	1350	Е	Nasukougen	11

488

487

491 Figure 1 Schedule to update snowpack information. Yellow: using observed data; green: using

492 predicted data. Meteorological prediction data is updated for every 12 hours.

494 Figure 2 Examples of low stability snowpacks at risk of avalanche under; a: heavy snowfall,

495 b: snowfall with a weak layer, and c: wet snow with liquid water infiltration.

496

500 Figure 3 Flow chart for simulation of the natural stability index using DSM factor to estimate

avalanche risk. See Table 3 for explanation of symbols.

Figure 4 Rate of reduction of the dry snow metamorphism (DSM) factor during
equi-temperature metamorphism depending on snow temperature (Hirashima *et al.*, 2011;
Hirashima and Abe, 2012).

509 Figure 5 Flow chart for simulation of liquid water infiltration into the snowpack. See Table 3

510 for explanation of symbols.

511

514 Figure 6 Simulated natural stability indices for surface avalanches in 2014–2017. Red arrows

